Composites Combine materials with the objective of getting a more desirable combination of properties Ex: get flexibility & weight of a polymer plus the.

Slides:



Advertisements
Similar presentations
Ahmed W. Moustafa Lecture (1)
Advertisements

Registered Electrical & Mechanical Engineer
Chapter ISSUES TO ADDRESS... What are the classes and types of composites ? What are the advantages of using composite materials? How do we predict.
Composite Materials R. Lindeke ENGR 2110.
Chapter 7 Mechanical Properties of Solids.
COMPOSITE MATERIALS Dr. S.M.K. Hosseini
Composites - overview Artificial combination of matrix phase & dispersed phase Artificial combination of matrix phase & dispersed phase Matrix: metal,
COMPOSITE MATERIALS ISSUES TO ADDRESS...
ISSUES TO ADDRESS... What are the classes and types of composites ? 1 Why are composites used instead of metals, ceramics, or polymers? How do we estimate.
CHAPTER 7: MECHANICAL PROPERTIES
CHAPTER 15: COMPOSITE MATERIALS
ISSUES TO ADDRESS... How are metal alloys classified and how are they used? How do we classify ceramics? What are some applications for ceramics? 1 CHAPTER.
Manufacturing with Composite
CHAPTER 9: MECHANICAL FAILURE
CHAPTERs 14 to 16: Polymer & Composite STUDIES
Lecture # 10 Composites Learning Objectives:
D AY 34: C OMPOSITE M ATERIALS Properties of Composite Materials Types of Fiber that are commonly used.
composite materials Department “ORGANIC CHEMISRTY AND TECHNOLOGY”
COMPOSITE MATERIALS IAD 232 Ass. Prof. Dr. Işıl DUMAN.
Sandwich Construction Thin composite skins bonded to thicker, lightweight core. Large increase in second moment of area without weight penalty. Core needs.
How to fabricate optimum/complex materials from single materials
Reinforcements.
Composite(복합재) Associate Professor Su-Jin Kim
Particle, Fiber Polymer Matrix, Laminates
Chapter 16: Composite Materials
Chapter 6: Mechanical Properties
Mechanical Properties
CHAPTER 16: COMPOSITE MATERIALS
CHAPTER 6: MECHANICAL PROPERTIES
ME260 Mechanical Engineering Design II Instructor notes.
Spring 2001ISAT 430 Dr. Ken Lewis1 Things to Know Review ISAT 430.
Composite Part-2. We have already discussed, Composites include multiphase metal alloys, ceramics and polymers. A composite is considered to be any multiphase.
1 Material Science Composite materials. 2 Composite Materials A composite material consists of two independent and dissimilar materials In which one material.
ENGR-45_Lec-14_Metal_MechProp-1.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
ISSUES TO ADDRESS... How are metal alloys classified and how are they used? How do we classify ceramics? What are some applications for ceramics? 1 CHAPTER.
Subject: Composite Materials Science and Engineering Subject code:

Chapter 8-6 Stress-strain behavior (Room T): TS
1 Chapter 16 – Composites: Teamwork and Synergy in Materials.
No problem is too small or too trivial if we can really do something about it – Feyman No problem is too small or too trivial if we can really do something.
Chapter 16 – Composites: Teamwork and Synergy in Materials
Composites.
ME 330 Engineering Materials
Dr. Owen Clarkin School of Mechanical & Manufacturing Engineering Summary of Material Science Chapter 1: Science of Materials Chapter 2: Properties of.
Mechanical properties of dental biomaterials 2
Pusan National University Department of Materials Science& Engineering Objectives of Chapter 16  Study different categories of composites: particulate,
COMPOSITE MATERIALS Technology and Classification of Composite Materials Metal Matrix Composites Ceramic Matrix Composites Polymer Matrix Composites Guide.
Chapter 16: Composite Materials
6.1.3 In Situ Fabrication Techniques -Controlled unidirectional solidification of a eutectic alloy can result in a two-phase microstructure with one of.
Composite Materials R. Lindeke ENGR Introduction A Composite material is a material system composed of two or more macro constituents that differ.
Composite Materials R. Lindeke ENGR 2110.
The application of Composite materials
Computational Prediction of Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) using a XFEM Approach Emily A. Gerstein.
Chapter 15: Composite Materials
Materials Engineering
CHAPTER 6: MECHANICAL PROPERTIES
材料科学与工程专业英语 Special English for Materials Science and Engineering
Introduction to Composites
By: Engr. Rizwan Nasir B.Sc. Chemical Engineering 13 October, 2009
Principles of Engineering Polymers & Composites Lab
Composite Materials R. Lindeke ENGR
Metal Matrix Composites
Last class - Creep, relaxation, recovery PVC silicones polycarbonate
ME260 Mechanical Engineering Design II
IDEAL VS REAL MATERIALS
Introduction to Materials Science and Engineering
Reinforcement And Matrix
Composite Materials R. Lindeke ENGR 2110
Some specific polymers
CHAPTER 6: MECHANICAL PROPERTIES
Presentation transcript:

Composites Combine materials with the objective of getting a more desirable combination of properties Ex: get flexibility & weight of a polymer plus the strength of a ceramic Principle of combined action Mixture gives “averaged” properties Don’t always get what you want Ex: combine ferret (pet) + mink (fur) Desire a mink with good disposition but got a nasty ferret

Terminology/Classification • Composites: -- Multiphase material w/significant proportions of each phase. woven fibers cross section view 0.5 mm • Matrix: -- The continuous phase -- Purpose is to: - transfer stress to other phases - protect phases from environment -- Classification: MMC, CMC, PMC metal ceramic polymer • Dispersed phase: -- Purpose: enhance matrix properties. MMC: increase sy, TS, creep resist. CMC: increase Kc PMC: increase E, sy, TS, creep resist. -- Classifications: Particle, fiber, structural Reprinted with permission from D. Hull and T.W. Clyne, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York, 1996, Fig. 3.6, p. 47.

Composite Benefits • CMCs: Increased toughness • PMCs: Increased E/r E(GPa) G=3E/8 K=E Density, r [mg/m3] .1 .3 1 3 10 30 .01 2 metal/ metal alloys polymers PMCs ceramics fiber-reinf un-reinf particle-reinf Force Bend displacement Adapted from T.G. Nieh, "Creep rupture of a silicon-carbide reinforced aluminum composite", Metall. Trans. A Vol. 15(1), pp. 139-146, 1984. Used with permission. • MMCs: Increased creep resistance 20 30 50 100 200 10 -10 -8 -6 -4 6061 Al w/SiC whiskers s (MPa) e ss (s-1)

Composite Survey Adapted from Fig. 16.2, Callister 7e.

Composite Survey: Particle-I Particle-reinforced Fiber-reinforced Structural • Examples: Adapted from Fig. 10.19, Callister 7e. (Fig. 10.19 is copyright United States Steel Corporation, 1971.) - Spheroidite steel matrix: ferrite (a) (ductile) particles: cementite ( Fe 3 C ) (brittle) 60 mm Adapted from Fig. 16.4, Callister 7e. (Fig. 16.4 is courtesy Carboloy Systems, Department, General Electric Company.) - WC/Co cemented carbide matrix: cobalt (ductile) particles: WC (brittle, hard) V m : 10-15 vol%! 600 mm Adapted from Fig. 16.5, Callister 7e. (Fig. 16.5 is courtesy Goodyear Tire and Rubber Company.) - Automobile tires matrix: rubber (compliant) particles: C (stiffer) 0.75 mm

Composite Survey: Particle-II Particle-reinforced Fiber-reinforced Structural Concrete – gravel + sand + cement - Why sand and gravel? Sand packs into gravel voids Reinforced concrete - Reinforce with steel rerod or remesh - increases strength - even if cement matrix is cracked Prestressed concrete - remesh under tension during setting of concrete. Tension release puts concrete under compressive force - Concrete much stronger under compression. - Applied tension must exceed compressive force threaded rod nut Post tensioning – tighten nuts to put under compression

Composite Survey: Particle-III Particle-reinforced Fiber-reinforced Structural • Elastic modulus, Ec, of composites: -- “rule of mixtures”. c m upper limit: E = V + p Data: Cu matrix w/tungsten particles 20 4 6 8 10 150 250 30 350 vol% tungsten E(GPa) (Cu) ( W) lower limit: 1 E c = V m + p Adapted from Fig. 16.3, Callister 7e. (Fig. 16.3 is from R.H. Krock, ASTM Proc, Vol. 63, 1963.) • Application to other properties: -- Electrical conductivity, se: Replace E in equations with se. -- Thermal conductivity, k: Replace E in equations with k.

Composite Survey: Fiber-I Particle-reinforced Fiber-reinforced Structural Fibers very strong Provide significant strength improvement to material Ex: fiber-glass Continuous glass filaments in a polymer matrix Strength due to fibers Polymer simply holds them in place

Composite Survey: Fiber-II Particle-reinforced Fiber-reinforced Structural Fiber Materials Whiskers - Thin single crystals - large length to diameter ratio graphite, SiN, SiC high crystal perfection – extremely strong, strongest known very expensive Fibers polycrystalline or amorphous generally polymers or ceramics Ex: Al2O3 , Aramid, E-glass, Boron, UHMWPE Wires Metal – steel, Mo, W

Fiber Alignment aligned continuous aligned random discontinuous Adapted from Fig. 16.8, Callister 7e. aligned continuous aligned random discontinuous

Composite Survey: Fiber-III Particle-reinforced Fiber-reinforced Structural • Aligned Continuous fibers • Examples: -- Metal: g'(Ni3Al)-a(Mo) by eutectic solidification. -- Ceramic: Glass w/SiC fibers formed by glass slurry Eglass = 76 GPa; ESiC = 400 GPa. (a) (b) fracture surface From F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.22, p. 145 (photo by J. Davies); (b) Fig. 11.20, p. 349 (micrograph by H.S. Kim, P.S. Rodgers, and R.D. Rawlings). Used with permission of CRC Press, Boca Raton, FL. matrix: a (Mo) (ductile) fibers: g ’ (Ni3Al) (brittle) 2 mm From W. Funk and E. Blank, “Creep deformation of Ni3Al-Mo in-situ composites", Metall. Trans. A Vol. 19(4), pp. 987-998, 1988. Used with permission.

Composite Survey: Fiber-IV Particle-reinforced Fiber-reinforced Structural • Discontinuous, random 2D fibers • Example: Carbon-Carbon -- process: fiber/pitch, then burn out at up to 2500ºC. -- uses: disk brakes, gas turbine exhaust flaps, nose cones. (b) fibers lie in plane view onto plane C fibers: very stiff very strong C matrix: less stiff less strong (a) • Other variations: -- Discontinuous, random 3D -- Discontinuous, 1D Adapted from F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.24(a), p. 151; (b) Fig. 4.24(b) p. 151. (Courtesy I.J. Davies) Reproduced with permission of CRC Press, Boca Raton, FL.

Composite Survey: Fiber-V Particle-reinforced Fiber-reinforced Structural • Critical fiber length for effective stiffening & strengthening: fiber strength in tension fiber diameter shear strength of fiber-matrix interface • Ex: For fiberglass, fiber length > 15 mm needed • Why? Longer fibers carry stress more efficiently! Shorter, thicker fiber: Longer, thinner fiber: Poorer fiber efficiency Adapted from Fig. 16.7, Callister 7e. Better fiber efficiency s (x)

Composite Strength • Estimate of Ec and TS for discontinuous fibers: Particle-reinforced Fiber-reinforced Structural • Estimate of Ec and TS for discontinuous fibers: -- valid when -- Elastic modulus in fiber direction: -- TS in fiber direction: Ec = EmVm + KEfVf efficiency factor: -- aligned 1D: K = 1 (aligned ) -- aligned 1D: K = 0 (aligned ) -- random 2D: K = 3/8 (2D isotropy) -- random 3D: K = 1/5 (3D isotropy) Values from Table 16.3, Callister 7e. (Source for Table 16.3 is H. Krenchel, Fibre Reinforcement, Copenhagen: Akademisk Forlag, 1964.) (TS)c = (TS)mVm + (TS)fVf (aligned 1D)

Composite Survey: Structural Particle-reinforced Fiber-reinforced Structural • Stacked and bonded fiber-reinforced sheets -- stacking sequence: e.g., 0º/90º -- benefit: balanced, in-plane stiffness Adapted from Fig. 16.16, Callister 7e. • Sandwich panels -- low density, honeycomb core -- benefit: small weight, large bending stiffness honeycomb adhesive layer face sheet Adapted from Fig. 16.18, Callister 7e. (Fig. 16.18 is from Engineered Materials Handbook, Vol. 1, Composites, ASM International, Materials Park, OH, 1987.)