23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 1 / 14 Global Gyrokinetic Simulations Heat Transport Plasma Rotation.

Slides:



Advertisements
Similar presentations
Key Questions and Issues in turbulent Transport in Tokamaks JAEA M. Kikuchi 2 nd APTWG at Chengdu, Plenary session, presentation number PL-1 1PL-1 Acknowledgements:
Advertisements

Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
1 15th May 2012 Association EURATOM-CEA Shaodong Song Observation of Strong Inward Heat Transport with Off-axis ECRH in Tore Supra Heat pinch experiments.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Chalmers University of Technology J. Weiland 1, K. Crombe 2, P. Mantica 3, T. Tala 4, V. Naulin 5 and the JET-EFDA Contributors * 1. Chalmers University.
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
Reduced transport regions in rotating tokamak plasmas Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes University of.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
1 Global Gyrokinetic Simulations of Toroidal ETG Mode in Reversed Shear Tokamaks Y. Idomura, S. Tokuda, and Y. Kishimoto Y. Idomura 1), S. Tokuda 1), and.
Some results / ideas on the effect of flows D. Strintzi, C. Angioni, A. Bottino, A.G. Peeters.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
GSEP 3 rd Annual Project Meeting Zhihong Lin & US DOE SciDAC GSEP Team 8/9-8/10, 2010, GA.
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Intermittent Transport and Relaxation Oscillations of Nonlinear Reduced Models for Fusion Plasmas S. Hamaguchi, 1 K. Takeda, 2 A. Bierwage, 2 S. Tsurimaki,
1 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto,
Turbulent transport in collisionless plasmas: eddy mixing or wave-particle decorrelation? Z. Lin Y. Nishimura, I. Holod, W. L. Zhang, Y. Xiao, L. Chen.
Chalmers University of Technology The L-H transition on EAST Jan Weiland and C.S. Liu Chalmers University of Technoloy and EURATOM_VR Association, S
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
Presented by XGC: Gyrokinetic Particle Simulation of Edge Plasma CPES Team Physics and Applied Math Computational Science.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Joaquim Loizu P. Ricci, F. Halpern, S. Jolliet, A. Mosetto
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Particle-in-Cell Simulations of Electron Transport from Plasma Turbulence: Recent Progress in Gyrokinetic Particle Simulations of Turbulent Plasmas Z.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Interplay between energetic-particle-driven GAMs and turbulence D. Zarzoso 15 th European Fusion Theory Conference, Oxford, September CEA, IRFM,
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
11 Role of Non-resonant Modes in Zonal Flows and Intrinsic Rotation Generation Role of Non-resonant Modes in Zonal Flows and Intrinsic Rotation Generation.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Association Euratom-Cea 21 st IAEA FEC, Chengdu, Oct. 2006TH/2-21 Beyond scale separation in gyrokinetic turbulence X. Garbet 1, Y. Sarazin 1,
Association EURATOM-CEA Electromagnetic Self-Organization and Turbulent Transport in Tokamaks G. Fuhr, S. Benkadda, P. Beyer France Japan Magnetic Fusion.
1/1318 th PSI conference – Toledo, May 2008P. Tamain Association EURATOM-CEA 3D modelling of edge parallel flow asymmetries P. Tamain ab, Ph. Ghendrih.
Chalmers University of Technology Simulations of the formation of transport barriers including the generation of poloidal spinup due to turbulence J. Weiland.
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
EXTENSIONS OF NEOCLASSICAL ROTATION THEORY & COMPARISON WITH EXPERIMENT W.M. Stacey 1 & C. Bae, Georgia Tech Wayne Solomon, Princeton TTF2013, Santa Rosa,
(I) Microturbulence in magnetic fusion devices – New insights from gyrokinetic simulation & theory F. Jenko, C. Angioni, T. Dannert, F. Merz, A.G. Peeters,
Summary on transport IAEA Technical Meeting, Trieste Italy Presented by A.G. Peeters.
Carine Giroud 1 21st IAEA Fusion Energy, Chengdu Carine Giroud 1 IAEA, Chengdu Progress in understanding impurity transport at JET.
Y. Kishimoto 1,2), K. Miki 1), N. Miyato 2), J.Q.Li 1), J. Anderson 1) 21 st IAEA Fusion Energy Conference IAEA-CN-149-PD2 (Post deadline paper) October.
Transport of parallel momentum induced by up-down asymmetry, role of collisions and thermoelectric pinch A.G. Peeters 1, Y. Camenen 1 C. Angioni 2, N.
TTF M. Ottaviani Euratom TORE SUPRA Overview of progress in transport theory and in the understanding of the scaling laws M. Ottaviani EURATOM-CEA,
Turbulent Convection and Anomalous Cross-Field Transport in Mirror Plasmas V.P. Pastukhov and N.V. Chudin.
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
Seminar PPPL, 25 January 2011 Association Euratom-Cea 1 Interplay between neoclassical and turbulent transport on Tore Supra Acknowledgements: J. Abiteboul,
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Transport Model with Global Flow M. Yagi, M. Azumi 1, S.-I. Itoh, K. Itoh 2 and A. Fukuyama 3 Research Institute for Applied Mechanics, Kyushu University.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
Towards an Emerging Understanding of Nonlocal Transport K.Ida 1), Z.Shi 2), H.J.Sun 2,3), S.Inagaki 4), K.Kamiya 5), J.Rice 6), N.Tamura 1), P.H.Diamond.
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
54th Annual Meeting of the Division of Plasma Physics, October 29 – November 2, 2012, Providence, Rhode Island 5-pin Langmuir probe measures floating potential.
G.Y. Park 1, S.S. Kim 1, T. Rhee 1, H.G. Jhang 1, P.H. Diamond 1,2, I. Cziegler 2, G. Tynan 2, and X.Q. Xu 3 1 National Fusion Research Institute, Korea.
Improving Predictive Transport Model C. Bourdelle 1), A. Casati 1), X. Garbet 1), F. Imbeaux 1), J. Candy 2), F. Clairet 1), G. Dif-Pradalier 1), G. Falchetto.
Ryan Woodard (Univ. of Alaska - Fairbanks)
IAEA Fusion Energy Conference 2012, 8-13 Oct., San Diego, USA
Spontaneous rotation in stellarator and tokamak
Center for Plasma Edge Simulation
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Influence of energetic ions on neoclassical tearing modes
T. Morisaki1,3 and the LHD Experiment Group
T. Morisaki1,3 and the LHD Experiment Group
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Presentation transcript:

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 1 / 14 Global Gyrokinetic Simulations Heat Transport Plasma Rotation Global Gyrokinetic Simulations of Heat Transport & Plasma Rotation Y Sarazin 1, V Grandgirard 1, J Abiteboul 1, S Allfrey 1, X Garbet 1, Ph Ghendrih 1, G Latu 1, A Strugarek 1, G Dif-Pradalier 2, P H Diamond 2,3, B F McMillan 4, T M Tran 4, L Villard 4, S Ku 5, C S Chang 5, S Jolliet 6, A Bottino 7, P Angelino 8 1. CEA, IRFM Cadarache, Saint Paul-lez-Durance cedex, France. 2. Center for Astrophys. & Space Sciences, UCSD, La Jolla, California, USA. 3. National Fusion Research Institute, Daejeon, Republic of Korea. 4. CRPP, Assoc. Euratom-Confédération Suisse, EPFL, Lausanne, Switzerland. 5. Courant Institute of Math. Sciences, New York Univ., New York, USA. 6. Japan Atomic Energy Agency, Higashi-Ueno 6-9-3, Tokyo, Japan. 7. Max-Planck IPP, Association Euratom, Garching, Germany. 8. Labo. of Computational Systems Biotech., EPFL, Lausanne, Switzerland. GYSELA

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 2 / 14 Introduction Open questions for ITER regarding turbulent transport:  Impact of large scale transport on scaling laws  c  E =F(  *, *, ,…)?  meso-scale avalanches / ZF interaction => gyro-Bohm scaling  Generation & magnitude of poloidal / toroidal rotation? Critical for turbulence saturation & MHD stability  Turbulence-generated poloidal & toroidal corrugations  How to trigger & maintain transport barriers? New generation of gyrokinetic codes able to address these issues … thanks to the large increase of HPC resources (PetaFlop scale) GYSELA [Grandgirard JCP '06], ORB5 [Jolliet CPC '07], XGC1 [Chang PoP '08], ELMFIRE [Heikkinen JCP '08], GT5D [Idomura NF '09], global-GENE [Görler '09, Lapillonne '10], multi scale TRINITY [Barnes '10], FEFI [Scott CPP '10] [Strugarek '10]

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 3 / 14 Main characteristics of 3 gyrokinetic codes All three codes are (for simulations used)  Full-f (no scale separation fluctuations/equilibrium)  Flux driven  Electrostatic, adiabatic electrons, collisional  Global geometry [Grandgirard JCP '06, PPCF '08] GYSELA Semi-Lagrangian ORB5 PIC, optimized loading XGC1 PIC, X-point [Jolliet CPC '07][Chang & Ku PoP '08, '09] [Brizard & Hahm RMP '07] ;  Consistent formulation of Gyrokinetic theory

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 4 / 14 Resilience of temperature profile  Modest increase of temperature when Source magnitude S 0 ~P add  Caveat: requires long simulation runs (~  E with  c  E  *  3 ) [Sarazin NF '10]  Consequence: stored energy  less than P add  experimental degradation of  E with P add is recovered GYSELA

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 5 / 14  =r/a Inward & outward avalanches  Transport dominated by large scale avalanches (length  corr )  Intermittent (1/f Fourier frequency spectrum)  Propagation velocity  * c s (  10 3 m.s  1 in ITER) Outward/inward fronts - sometimes related to positive/negative E r time (10 4  c  1 ) GYSELA (  * =1/512) ORB5 (  * =1/280) Heat flux [gBohm units]  =r/a [Idomura NF '09] [McMillan PoP '09] Exp. Evidences: [ Politzer PRL '00, Tamura IAEA '10, Endler JNM '99, Rudakov PPCF '01, Boedo PoP '01, Grulke PoP '06, Antar PoP '07, Müller PoP '07, Zweben PPCF '07, Fedorczak JNM '09, Pedrosa EPS '10, etc…] [Sarazin NF '10]

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 6 / 14  Common understanding:  Local transport assumption  Edge = core boundary condition  Simulation with prescribed H-mode pedestal (XGC1): Edge ITG turbulence observed to propagate inwards  destabilization of the core Edge turbulence does propagate inwards [Ku NF '09] time [R/v T ]  =r/a Turbulence intensity [Ku NF '09] XGC1 (  * =1/180) XGC1 (  * =1/180)  Reminiscent of inward propagation of temperature front after ELM event on JET [Sarazin PPCF '02] Iso-contours of T e (JET #49637) D  Time [s]

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 7 / 14 Gyro-Bohm scaling despite avalanches  Usual framework: Small scale vortices (  corr  i )  local transport  gyroBohm scaling Then: If avalanches feel the system size  breaking of gyroBohm scaling?  Answer is NO: still gyroBohm at small  * (see [Jolliet & Idomura IAEA '10] at intermediate  * ) adapted from [McMillan PRL '10]

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 8 / 14 Gyro-Bohm scaling despite avalanches  Usual framework: Small scale vortices (  corr  i )  local transport  gyroBohm scaling Then: If avalanches feel the system size  breaking of gyroBohm scaling?  Answer is NO: still gyroBohm at small  * (see [Jolliet & Idomura IAEA '10] at intermediate  * )  Possible reasons:   corr  i GYSELA Poloidal cross section of  (non axi-symmetric component) Smaller  *  Avalanches are meso-scale

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 9 / 14 ctct GYSELA (  * =1/256, * =0.05)  =r/a Gradient R/L T ExB shearing rate Wave-like structure of ZF controls avalanche size  Zonal Flows radially localized  Limit extension of avalanches  "Staircase" structure  Framework for non-local formulation of transport [Dif-Pradalier PRE '10] THC/P4-06  Radial profile:  wave-like pattern  predicted by theory  scales like  i [Diamond, Itoh, Itoh, Hahm PPCF '05] GYSELA

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 10 / 14 Poloidal flow neoclassical – shear is NOT [Dif-Pradalier PRL '09]  In turbulent regime (no transport barrier) :  v  still mainly neoclassical:  Difference (v   v  neo ) well captured by Reynolds'stress  Reynolds'stress component  when collisionality   Compare E r from 2 expressions: Turbulent regime       E GYSELA ~  lin  E neo  turbulence drives mean shear

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 11 / 14   exact momentum (waves + part.) conservation law  Local toroidal momentum balance well fulfilled: radial current (=0 due to charge conservation) Reynolds' stresspolarization term Local balance of parallel momentum is satisfied [Abiteboul EPS '10] [Diamond-Kim PF '91, Peeters PRL '07 PoP '09, Hahm PoP '08, Gürcan PoP '08 '09, Camenen PRL '09, Mc Devitt PRL '10] GYSELA [Brizard '10, Scott '10, Abiteboul & Garbet '10]  Large contribution from neo. & turb. components of RS tensor

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 12 / 14 U  from supra-thermal & barely passing particles  Co-current toroidal spin-up carried out by particles supra-thermal barely passing cf. [Fenzi '10 this conf. EX/3-4] Thermal boundary [Hahm PoP '08, Peeters PoP '09, Garbet "Festival de Théorie" '09] Theoretical QL prediction for  U//  Consistent with QL theoretical prediction

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 13 / 14 Avalanches transport both heat & U   Dipolar structure (conservation) of U || associated to 1 st relaxation GYSELA  In saturated non-linear regime: Avalanches of heat also transport // momentum -> OK with exp./theo. ; suggests similar  eff (Prandtl number ~1) -> reminiscent to exp. observations on JET Cross-correlation (Q turb, U || ) GYSELA [Hidalgo PRL '03] [Diamond PoP '08]

23 rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, October 2010Y. Sarazin 14 / 14 Conclusions  New generation of global full-f GK codes (GYSELA, ORB5, XGC1, …)  Turbulent transport: excellent qualitative agreement  Transport dominated by meso-scale transport events: inward & outward avalanches -> non local / non diffusive  new paradigm for core-edge interactions & transients  Gyro-Bohm effective diffusivity at sufficiently small  * (<1/250)  critical role of zonal flow radial profile  Poloidal rotation mainly neoclassical – shear is NOT (turbulence)  Many players / rich physics in toroidal momentum balance Supra-thermal particles drive co-current spin-up Transport of U || correlated to heat transport