Fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte,

Slides:



Advertisements
Similar presentations
Technische universität dortmund fakultät für informatik informatik 12 Models of computation Peter Marwedel TU Dortmund Informatik 12 Graphics: © Alexandra.
Advertisements

Peter Marwedel TU Dortmund, Informatik 12
Fakultät für informatik informatik 12 technische universität dortmund Optimizations - Compilation for Embedded Processors - Peter Marwedel TU Dortmund.
Mathematical Preliminaries
Fundamentals of Probability
Adders Used to perform addition, subtraction, multiplication, and division (sometimes) Half-adder adds rightmost (least significant) bit Full-adder.
1 Concurrency: Deadlock and Starvation Chapter 6.
Constraint Satisfaction Problems
Fakultät für informatik informatik 12 technische universität dortmund Imperative model of computation Peter Marwedel TU Dortmund, Informatik 12 Graphics:
Technische universität dortmund fakultät für informatik informatik 12 Specifications and Modeling Peter Marwedel TU Dortmund, Informatik 12 Graphics: ©
Fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte,
Fakult ä t f ü r informatik informatik 12 technische universit ä t dortmund Data flow models Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra.
Fakultät für informatik informatik 12 technische universität dortmund Specifications and Modeling Peter Marwedel TU Dortmund, Informatik 12 Graphics: ©
Fakultät für informatik informatik 12 technische universität dortmund SDL Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte, Gesine.
Technische universität dortmund fakultät für informatik informatik 12 Discrete Event Models Peter Marwedel TU Dortmund, Informatik 12 Germany
Communicating finite state machines
Technische universität dortmund fakultät für informatik informatik 12 Specifications and Modeling Peter Marwedel TU Dortmund, Informatik
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Chapter 7 System Models.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Subspace Embeddings for the L1 norm with Applications Christian Sohler David Woodruff TU Dortmund IBM Almaden.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
Points, Vectors, Lines, Spheres and Matrices
Fakultät für informatik informatik 12 technische universität dortmund Classical scheduling algorithms for periodic systems Peter Marwedel TU Dortmund,
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Discrete time Markov Chain
Discrete Math Recurrence Relations 1.
Copyright © Cengage Learning. All rights reserved.
Chapter 11: Models of Computation
Turing Machines.
1 Petri Nets I Paul Fishwick author From
Detection Chia-Hsin Cheng. Wireless Access Tech. Lab. CCU Wireless Access Tech. Lab. 2 Outlines Detection Theory Simple Binary Hypothesis Tests Bayes.
Chapter 4 Systems of Linear Equations; Matrices
Direct-Current Circuits
Constant, Linear and Non-Linear Constant, Linear and Non-Linear
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Discrete Mathematics 3. MATRICES, RELATIONS, AND FUNCTIONS Lecture 5 Dr.-Ing. Erwin Sitompul
Splines I – Curves and Properties
6.4 Best Approximation; Least Squares
1 Using Bayesian Network for combining classifiers Leonardo Nogueira Matos Departamento de Computação Universidade Federal de Sergipe.
Linear Algebra (Mathematics for CG) Reading: HB Appendix A
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Chapter 2 Entity-Relationship Data Modeling: Tools and Techniques
Chapter 10: The Traditional Approach to Design
Systems Analysis and Design in a Changing World, Fifth Edition
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
12 System of Linear Equations Case Study
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Petri Nets Jian-Jia Chen (slides are based on Peter Marwedel)
(slides are based on Peter Marwedel)
technische universität dortmund fakultät für informatik informatik 12 Early design phases Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund,
Technische universität dortmund fakultät für informatik informatik 12 Discrete Event Models Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund,
State Variables.
The Pumping Lemma for CFL’s
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
Technische Universität München Fakultät für Informatik Computer Graphics SS 2014 Transformations Rüdiger Westermann Lehrstuhl für Computer Graphik und.
Fakultät für informatik informatik 12 technische universität dortmund Specifications - Session 5 - Peter Marwedel TU Dortmund Informatik 12 Germany Slides.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Petri nets Introduced in 1962 by Carl Adam Petri in his PhD thesis. Focus.
technische universität dortmund fakultät für informatik informatik 12 Early design phases Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund,
2. Specification and Modeling
Presentation transcript:

fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte, Gesine Marwedel, /11/09

- 2 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Models of computation considered in this course Communication/ local computations Shared memory Message passing Synchronous | Asynchronous Undefined components Plain text, use cases | (Message) sequence charts Communicating finite state machines StateChartsSDL Data flow(Not useful)Kahn networks, SDF Petri nets C/E nets, P/T nets, … Discrete event (DE) model VHDL, Verilog, SystemC, … Only experimental systems, e.g. distributed DE in Ptolemy Von Neumann modelC, C++, Java C, C++, Java with libraries CSP, ADA |

- 3 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Introduction Introduced in 1962 by Carl Adam Petri in his PhD thesis. Focus on modeling causal dependencies; no global synchronization assumed (message passing only). Key elements: Conditions Either met or no met. Events May take place if certain conditions are met. Flow relation Relates conditions and events. Conditions, events and the flow relation form a bipartite graph (graph with two kinds of nodes).

- 4 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Example: Synchronization at single track rail segment Preconditions

- 5 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Playing the token game use normal view mode!

- 6 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Conflict for resource track

- 7 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 More complex example (1) Thalys trains between Cologne, Amsterdam, Brussels and Paris. [

- 8 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 s More complex example (2) Slightly simplified: Synchronization at Brussels and Paris, using stationsGare du Nord and Gare de Lyon at Paris use normal view mode!

- 9 - technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Condition/event nets Def.: N=(C,E,F) is called a net, iff the following holds 1.C and E are disjoint sets 2.F (C E) (E C); is binary relation, (flow relation)

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Pre- and post-sets Def.: Let N be a net and let x (C E). x := {y | y F x} is called the pre-set of x, (or preconditions if x E) x := {y | x F y} is called the set of post-set of x, (or postconditions if x E) Example: x x x

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Loops and pure nets Def.: Let (c,e) C E. (c,e) is called a loop iff cFe eFc. Def.: Net N=(C,E,F) is called pure, if F does not contain any loops.

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Simple nets Def.: A net is called simple if no two nodes n1 and n2 have the same pre-set and post-set. Example (not simple nets): Def.: Simple nets with no isolated elements meeting some additional restrictions are called condition/event nets (C/E nets).

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Place/transition nets Def.: (P, T, F, K, W, M 0 ) is called a place/transition net iff 1.N=(P,T,F) is a net with places p P and transitions t T 2.K: P ( 0 { }) \{0} denotes the capacity of places ( symbolizes infinite capacity) 3.W: F ( 0 \{0}) denotes the weight of graph edges 4.M 0 : P 0 { } represents the initial marking of places W M0M0 (Segment of some net) defaults: K = W = 1

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Computing changes of markings Firing transitions t generate new markings on each of the places p according to the following rules:

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Activated transitions Transition t is activated iff Activated transitions can take place or fire, but dont have to. We never talk about time in the context of Petri nets. The order in which activated transitions fire, is not fixed (it is non-deterministic).

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Shorthand for changes of markings Let p P: M´(p) = M(p)+ t(p) Slide 12: +: vector add M´ = M+ t

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Matrix N describing all changes of markings Def.: Matrix N of net N is a mapping N: P T (integers) such that t T: N(p,t)=t(p) Component in column t and row p indicates the change of the marking of place p if transition t takes place. For pure nets, (N, M 0 ) is a complete representation of a net.

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Example: N = s

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Place - invariants For any transition t j T we are looking for sets R P of places for which the accumulated marking is constant: Example: Standardized technique for proving properties of system models tjtj

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Characteristic Vector Let: Scalar product

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Condition for place invariants Accumulated marking constant for all transitions if Equivalent to N T c R = 0 where N T is the transposed of N

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 More detailed view of computations System of linear equations. Solution vectors must consist of zeros and ones. Equations with multiple unknowns that must be integers called diophantic ( Greek mathematician Diophantos, ~300 B.C.). Diophantic linear equation system more complex to solve than standard system of linear equations (actually NP-hard)) Different techniques for solving equation system (manual,..)

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Application to Thalys example N T c R = 0, with N T = Solutions? Educated guessing: rows =0 1 linear dependency among rows rank = 10-1 = 9 Dimension of solution space = 13 - rank = 4 4 components of (6, 11, 12, 13) of c R are independent set one of these to 1 and others to 0 to obtain a basis for the solution space Solutions? Educated guessing: rows =0 1 linear dependency among rows rank = 10-1 = 9 Dimension of solution space = 13 - rank = 4 4 components of (6, 11, 12, 13) of c R are independent set one of these to 1 and others to 0 to obtain a basis for the solution space

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, st basis t 10 (s 10 ) b 1 (s 10 ) + t 10 (s 11 ) b 1 (s 11 ) + t 10 (s 13 ) b 1 (s 13 ) = 0 b 1 (s 10 ) = 0 t 9 (s 9 ) b 1 (s 9 ) + t 9 (s 10 ) b 1 (s 10 ) = 0 b 1 (s 9 )=0 … Set one of components (6, 11, 12, 13) to 1, others to 0. 1st basis b 1 : b 1 (s 6 )=1, b 1 (s 11 )=0, b 1 (s 12 )=0, b 1 (s 13 )=0 All components {0, 1} c R1 = b 1 b 1 = (1,1,1,1,1,1,0,0,0,0,0,0,0)

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Interpretation of the 1 st invariant Characteristic vector describes places for Cologne train. We proved that: the number of trains along the path remains constant. Characteristic vector describes places for Cologne train. We proved that: the number of trains along the path remains constant. s C R,1

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, nd basis t 10 (s 10 ) b 2 (s 10 ) + t 10 (s 11 ) b 2 (s 11 ) + t 10 (s 13 ) b 2 (s 13 ) = 0 b 2 (s 10 ) = 1 t 9 (s 9 ) b 2 (s 9 ) + t 9 (s 10 ) b 2 (s 10 ) = 0 b 2 (s 9 )=1 … Set one of components (6, 11, 12, 13) to 1, others to 0. 2nd basis b 2 : b 2 (s 6 )=0, b 2 (s 11 )=1, b 2 (s 12 )=0, b 2 (s 13 )=0 b 2 not a characteristic vector, but c R,2 =b 1 +b 2 is c R,2 = (1,0,0,0,1,1,0,0,1,1,1,0,0) b 1 = (1, 1, 1, 1,1,1,0,0,0,0,0,0,0) b 2 = (0,-1,-1,-1,0,0,0,0,1,1,1,0,0)

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Interpretation of the 2 nd invariant We proved that: None of the Amsterdam trains gets lost (nice to know ). We proved that: None of the Amsterdam trains gets lost (nice to know ). s C R,2

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Setting b 3 (s 12 ) to 1 and b 4 (s 13 ) to 1 leads to an additional 2 invariants We proved that: the number of trains serving Amsterdam, Cologne and Paris remains constant. the number of train drivers remains constant. s C R,4 C R,3 C R,1 C R,2

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Applications Modeling of resources; modeling of mutual exclusion; modeling of synchronization.

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Predicate/transition nets Goal: compact representation of complex systems. Key changes: Tokens are becoming individuals; Transitions enabled if functions at incoming edges true; Individuals generated by firing transitions defined through functions Changes can be explained by folding and unfolding C/E nets, semantics can be defined by C/E nets.

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Example: Dining philosophers problem n>1 philosophers sitting at a round table; n forks, n plates with spaghetti; philosophers either thinking or eating spaghetti (using left and right fork). How to model conflict for forks? How to guarantee avoiding starvation? How to model conflict for forks? How to guarantee avoiding starvation? 2 forks needed!

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Condition/event net model of the dining philosophers problem Let x {1..3} t x : x is thinking e x : x is eating f x : fork x is available Model quite clumsy. Difficult to extend to more philosophers. Model quite clumsy. Difficult to extend to more philosophers. Normal view mode!

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Predicate/transition model of the dining philosophers problem (1) Let x be one of the philosophers, let l(x) be the left spoon of x, let r(x) be the right spoon of x. p1 p3 p2 f1 f2 f3 Tokens: individuals. Semantics can be defined by replacing net by equivalent condition/event net. Tokens: individuals. Semantics can be defined by replacing net by equivalent condition/event net.

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Predicate/transition model of the dining philosophers problem (2) p1 p3 p2 f1 f2 f3 Model can be extended to arbitrary numbers of people. use normal view mode! l(x) r(x) v xx u xx t e f

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Evaluation Pros: Appropriate for distributed applications, Well-known theory for formally proving properties, Initially a quite bizarre topic, but now accepted due to increasing number of distributed applications. Cons (for the nets presented) : problems with modeling timing, no programming elements, no hierarchy. Extensions: Enormous amounts of efforts on removing limitations. back to full screen mode

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Computational UML: Activity diagram © Cris Kobryn: UML 2001: A Standardization Odyssey, CACM, October, 1999 Extended Petri nets. Include decisions (like in flow charts). Graphical notation similar to SDL. swimlane

technische universität dortmund fakultät für informatik p.marwedel, informatik 12, 2009 Summary Petri nets: focus on causal relationships Condition/event nets Single token per place Place/transition nets Multiple tokens per place Predicate/transition nets Tokens become individuals Dining philosophers used as an example Extensions required to get around limitations