Fakultät für informatik informatik 12 technische universität dortmund Standard Optimization Techniques Peter Marwedel Informatik 12 TU Dortmund Germany.

Slides:



Advertisements
Similar presentations
Technische universität dortmund fakultät für informatik informatik 12 Models of computation Peter Marwedel TU Dortmund Informatik 12 Graphics: © Alexandra.
Advertisements

Fakultät für informatik informatik 12 technische universität dortmund Optimizations - Compilation for Embedded Processors - Peter Marwedel TU Dortmund.
Constraint Satisfaction Problems
10/01/2014 DMI - Università di Catania 1 Combinatorial Landscapes & Evolutionary Algorithms Prof. Giuseppe Nicosia University of Catania Department of.
Technische universität dortmund fakultät für informatik informatik 12 Specifications and Modeling Peter Marwedel TU Dortmund, Informatik 12 Graphics: ©
fakultät für informatik informatik 12 technische universität dortmund Additional compiler optimizations Peter Marwedel TU Dortmund Informatik 12 Germany.
Fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte,
Evaluation and Validation
Fakult ä t f ü r informatik informatik 12 technische universit ä t dortmund Data flow models Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra.
Fakultät für informatik informatik 12 technische universität dortmund Specifications and Modeling Peter Marwedel TU Dortmund, Informatik 12 Graphics: ©
Fakultät für informatik informatik 12 technische universität dortmund SDL Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte, Gesine.
Technische universität dortmund fakultät für informatik informatik 12 Discrete Event Models Peter Marwedel TU Dortmund, Informatik 12 Germany
Technische universität dortmund fakultät für informatik informatik 12 Specifications and Modeling Peter Marwedel TU Dortmund, Informatik
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Heuristics and Genetic Algorithms Michael D. Mobley The Boeing Company 12 July 2006.
0 - 0.
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
fakultät für informatik informatik 12 technische universität dortmund Optimizations - Compilation for Embedded Processors - Peter Marwedel TU Dortmund.
Technische universität dortmund fakultät für informatik informatik 12 Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems Peter.
Fakultät für informatik informatik 12 technische universität dortmund Classical scheduling algorithms for periodic systems Peter Marwedel TU Dortmund,
Computational Intelligence Winter Term 2011/12 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund.
1 1 Slide Chapter 1 & Lecture Slide Body of Knowledge n Management science Is an approach to decision making based on the scientific method Is.
1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.
Computational Intelligence Winter Term 2009/10 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund.
Local Search Algorithms
Linear Time Methods for Propagating Beliefs Min Convolution, Distance Transforms and Box Sums Daniel Huttenlocher Computer Science Department December,
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson 5: Problem Solving Problem Solving with Linear Programming Learning.
ZEIT4700 – S1, 2014 Mathematical Modeling and Optimization School of Engineering and Information Technology.
Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology Session # 10.
Technische universität dortmund fakultät für informatik informatik 12 Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems Jian-Jia.
Fakultät für informatik informatik 12 technische universität dortmund Lab 3: Scheduling Solution - Session 10 - Heiko Falk TU Dortmund Informatik 12 Germany.
Computational Intelligence Winter Term 2013/14 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund.
Chapter 12 PowerPoint Non-smooth Models.
Technische universität dortmund fakultät für informatik informatik 12 Specifications, Modeling, and Model of Computation Jian-Jia Chen (slides are based.
Computational Intelligence Winter Term 2013/14 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund.
13-Optimization Assoc.Prof.Dr. Ahmet Zafer Şenalp Mechanical Engineering Department Gebze Technical.
Constraint Optimization We are interested in the general non-linear programming problem like the following Find x which optimizes f(x) subject to gi(x)
Hardware/ Software Partitioning 2011 年 12 月 09 日 Peter Marwedel TU Dortmund, Informatik 12 Germany Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 These.
Fakultät für informatik informatik 12 technische universität dortmund Lab 4: Exploiting the memory hierarchy - Session 14 - Peter Marwedel Heiko Falk TU.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Hardware/Software Codesign.
MAE 552 – Heuristic Optimization Lecture 6 February 6, 2002.
Iterative Improvement Algorithms
An Introduction to Black-Box Complexity
Simulated Annealing Van Laarhoven, Aarts Version 1, October 2000.
Fakultät für informatik informatik 12 technische universität dortmund Classical scheduling algorithms for periodic systems Peter Marwedel TU Dortmund,
D Nagesh Kumar, IIScOptimization Methods: M1L4 1 Introduction and Basic Concepts Classical and Advanced Techniques for Optimization.
Universität Dortmund  P. Marwedel, Univ. Dortmund, Informatik 12, 2003 Hardware/software partitioning  Functionality to be implemented in software.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Ranga Rodrigo April 6, 2014 Most of the sides are from the Matlab tutorial. 1.
Optimization in Engineering Design Georgia Institute of Technology Systems Realization Laboratory Mixed Integer Problems Most optimization algorithms deal.
1 Exploring Custom Instruction Synthesis for Application-Specific Instruction Set Processors with Multiple Design Objectives Lin, Hai Fei, Yunsi ACM/IEEE.
Evaluation and Validation Peter Marwedel TU Dortmund, Informatik 12 Germany 2013 年 12 月 02 日 These slides use Microsoft clip arts. Microsoft copyright.
Derivative Free Optimization G.Anuradha. Contents Genetic Algorithm Simulated Annealing Random search method Downhill simplex method.
GENETIC ALGORITHMS.  Genetic algorithms are a form of local search that use methods based on evolution to make small changes to a popula- tion of chromosomes.
Thursday, May 9 Heuristic Search: methods for solving difficult optimization problems Handouts: Lecture Notes See the introduction to the paper.
Iterative Improvement Algorithm 2012/03/20. Outline Local Search Algorithms Hill-Climbing Search Simulated Annealing Search Local Beam Search Genetic.
C OMPARING T HREE H EURISTIC S EARCH M ETHODS FOR F UNCTIONAL P ARTITIONING IN H ARDWARE -S OFTWARE C ODESIGN Theerayod Wiangtong, Peter Y. K. Cheung and.
Probabilistic Algorithms Evolutionary Algorithms Simulated Annealing.
Optimization Problems
ZEIT4700 – S1, 2015 Mathematical Modeling and Optimization School of Engineering and Information Technology.
Fakultät für informatik informatik 12 technische universität dortmund Prepass Optimizations - Session 11 - Heiko Falk TU Dortmund Informatik 12 Germany.
Constraints Satisfaction Edmondo Trentin, DIISM. Constraint Satisfaction Problems: Local Search In many optimization problems, the path to the goal is.
Local search algorithms In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution State space = set of "complete"
Optimization Problems
Local Search Algorithms
Artificial Intelligence (CS 370D)
Standard Optimization Techniques
Evaluation and Validation
Optimization Problems
Local Search Algorithms
Presentation transcript:

fakultät für informatik informatik 12 technische universität dortmund Standard Optimization Techniques Peter Marwedel Informatik 12 TU Dortmund Germany 2009/12/10 Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 © These slides use Microsoft cliparts. All Microsoft restrictions apply.

- 2 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Structure of this course 2: Specification 3: ES-hardware 4: system software (RTOS, middleware, …) 8: Test 5: Validation & Evaluation (energy, cost, performance, …) 7: Optimization 6: Application mapping Application Knowledge Design repository Design Numbers denote sequence of chapters [Appendix: Standard Optimization Techniques

- 3 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Integer (linear) programming models Ingredients: Cost function Constraints Involving linear expressions of integer variables from a set X Def.: The problem of minimizing (1) subject to the constraints (2) is called an integer (linear) programming (ILP) problem. If all x i are constrained to be either 0 or 1, the IP problem said to be a 0/1 integer (linear) programming problem. Cost function Constraints:

- 4 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Example Optimal C

- 5 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Remarks on integer programming Maximizing the cost function: just set C=-C Integer programming is NP-complete. Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem) The case of x i is called linear programming (LP). Polynomial complexity, but most algorithms are exponential, in practice still faster than for ILP problems. The case of some x i and some x i is called mixed integer-linear programming. ILP/LP models good starting point for modeling, even if heuristics are used in the end. Solvers: lp_solve (public), CPLEX (commercial), …

- 6 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Simulated Annealing General method for solving combinatorial optimization problems. Based the model of slowly cooling crystal liquids. Some configuration is subject to changes. Special property of Simulated annealing: Changes leading to a poorer configuration (with respect to some cost function) are accepted with a certain probability. This probability is controlled by a temperature parameter: the probability is smaller for smaller temperatures.

- 7 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Simulated Annealing Algorithm procedure SimulatedAnnealing; var i, T: integer; begin i := 0; T := MaxT; configuration:= ; while not terminate(i, T) do begin while InnerLoop do begin NewConfig := variation(configuration); delta := evaluation(NewConfig,configuration); if delta < 0 then configuration := NewConfig; else if SmallEnough(delta, T, random(0,1)) then configuration := Newconfiguration; end; T:= NewT(i,T); i:=i+1; end; end;

- 8 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Explanation Initially, some random initial configuration is created. Current temperature is set to a large value. Outer loop: Temperature is reduced for each iteration Terminated if (temperature lower limit) or (number of iterations upper limit). Inner loop: For each iteration: New configuration generated from current configuration Accepted if (new cost cost of current configuration) Accepted with temperature-dependent probability if (cost of new config. > cost of current configuration).

- 9 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Behavior for actual functions 130 steps [people.equars.com/~marco/poli/phd/node57.html] 200 steps

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Performance This class of algorithms has been shown to outperform others in certain cases [Wegener, 2005]. Demonstrated its excellent results in the TimberWolf layout generation package [Sechen] Many other applications …

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Evolutionary Algorithms (1) Evolutionary Algorithms are based on the collective learning process within a population of individuals, each of which represents a search point in the space of potential solutions to a given problem. The population is arbitrarily initialized, and it evolves towards better and better regions of the search space by means of randomized processes of selection (which is deterministic in some algorithms), mutation, and recombination (which is completely omitted in some algorithmic realizations). [Bäck, Schwefel, 1993]

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Evolutionary Algorithms (2) The environment (given aim of the search) delivers a quality information (fitness value) of the search points, and the selection process favours those individuals of higher fitness to reproduce more often than worse individuals. The recombination mechanism allows the mixing of parental information while passing it to their descendants, and mutation introduces innovation into the population [Bäck, Schwefel, 1993]

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Evolutionary Algorithms Principles of Evolution Selection Cross-over Mutation © Thiele

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 An Evolutionary Algorithm in Action max. y 2 min. y 1 hypothetical trade-off front © Thiele

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 A Generic Multiobjective EA archive population new populationnew archive evaluate sample vary update truncate © Thiele

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009

technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 Summary Integer (linear) programming Integer programming is NP-complete Linear programming is faster Good starting point even if solutions are generated with different techniques Simulated annealing Modeled after cooling of liquids Overcomes local minima Evolutionary algorithms Maintain set of solutions Include selection, mutation and recombination