RECTILINEAR KINEMATICS: ERRATIC MOTION Today’s Objectives: Students will be able to: 1.Determine position, velocity, and acceleration of a particle using.

Slides:



Advertisements
Similar presentations
Chapter 2 Preview Objectives One Dimensional Motion Displacement
Advertisements

RECTILINEAR KINEMATICS: ERRATIC MOTION
POSITION AND DISPLACEMENT A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant,
Graphing motion. Displacement vs. time Displacement (m) time(s) Describe the motion of the object represented by this graph This object is at rest 2m.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections )
Particle Straight Line Kinematics: Ex Prob 2 This is an a = f(t) problem. I call it a “total distance” problem. Variations: v = f(t), s = f(t)…. A particle.
2009 Physics 2111 Fundamentals of Physics Chapter 2 1 Fundamentals of Physics Chapter 2 Motion Along A Straight Line 1.Motion 2.Position & Displacement.
GENERAL & RECTANGULAR COMPONENTS
Practicing with Graphs
I: Intro to Kinematics: Motion in One Dimension AP Physics C Mrs. Coyle.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3) Today’s Objectives: Students will be able to determine position, velocity, and acceleration of a.
MAE 242 Dynamics – Section I Dr. Kostas Sierros. Important information Room: G-19 ESB Phone: ext 2310 HELP:
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3)
UNIT 1: 1-D KINEMATICS Lesson 4:
Graphical Analysis of Motion.
ERRATIC MOTION Objectives:
GRAPHICAL ANALYSIS OF MOTION
Motion in One Dimension Average Versus Instantaneous.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION Today’s Objectives: Students will be able to: 1.Find the kinematic quantities (position, displacement,
Chapter 2 Motion in One Dimension 2-1 Displacement and Velocity  Motion – takes place over time Object’s change in position is relative to a reference.
GENERAL & RECTANGULAR COMPONENTS
Position, Velocity, and Acceleration. Position x.
CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS
NORMAL AND TANGENTIAL COMPONENTS
NORMAL AND TANGENTIAL COMPONENTS
Kinematics of Particles Lecture II. Subjects Covered in Kinematics of Particles Rectilinear motion Curvilinear motion Rectangular coords n-t coords Polar.
Resolve the vector into x & y components 40.0 m/s at 45 o SoW.
Mathematical Model of Motion Chapter 5. Velocity Equations Average velocity: v =  d/  t To find the distance traveled with constant or average velocity.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections ) Today’s Objectives: Students will be able to find the kinematic quantities.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
Aim: How do we use the kinematics formulas? Do Now: What is the difference between average velocity and instantaneous velocity? Quiz Tomorrow.
RECTILINEAR KINEMATICS: ERRATIC MOTION
An Overview of Mechanics Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics.
Resolve the vector into x & y components 40.0 m/s at 45 o SoW.
READ PAGES Physics Homework. Terms used to describe Physical Quantities Scalar quantities are numbers without any direction Vector quantities that.
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS
Meanings of the Derivatives. I. The Derivative at the Point as the Slope of the Tangent to the Graph of the Function at the Point.
Mechanics for Engineers: Dynamics, 13th SI Edition R. C. Hibbeler and Kai Beng Yap © Pearson Education South Asia Pte Ltd All rights reserved. CURVILINEAR.
Mechanics for Engineers: Dynamics, 13th SI Edition R. C. Hibbeler and Kai Beng Yap © Pearson Education South Asia Pte Ltd All rights reserved. CURVILINEAR.
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections ) Today’s Objectives: Students will be able to: a)Describe the motion of a particle traveling.
Kinematics ( Definitions) Aims 1)Be able to recall the definitions of displacement, instantaneous speed, average speed, velocity & acceleration. 2)Be able.
Motion graphs Position (displacement) vs. time Distance vs. time
Physics Chapter 2 Notes. Chapter Mechanics  Study of the motion of objects Kinematics  Description of how objects move Dynamics  Force and why.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Engineering Dynamics Module code NS 111 Engr. Dr Imran Shafi
Today Kinematics: Description of Motion Position and displacement
GENERAL & RECTANGULAR COMPONENTS
Velocity and Speed Graphically
CHAPTER 3 ACCELERATED MOTION
To introduce Kinematics
– KINEMATIC OF RECTILINEAR MOTION
NORMAL AND TANGENTIAL COMPONENTS
RECTILINEAR KINEMATICS: ERRATIC MOTION
GENERAL & RECTANGULAR COMPONENTS
Lecture 2 Chapter ( 2 ).
NORMAL AND TANGENTIAL COMPONENTS
Speed, Velocity, and Acceleration
Kinematics of Particles
Section 1 Displacement and Velocity
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
The Kinematics Equations
Today Kinematics: Description of Motion Position and displacement
GENERAL & RECTANGULAR COMPONENTS
Chapter 12 : Kinematics Of A Particle
Presentation transcript:

RECTILINEAR KINEMATICS: ERRATIC MOTION Today’s Objectives: Students will be able to: 1.Determine position, velocity, and acceleration of a particle using graphs. In-Class Activities: Check Homework Reading Quiz Applications s-t, v-t, a-t, v-s, and a-s diagrams Concept Quiz Group Problem Solving Attention Quiz

READING QUIZ 1. The slope of a v-t graph at any instant represents instantaneous A) velocity.B) acceleration. C) position.D) jerk. 2. Displacement of a particle in a given time interval equals the area under the ___ graph during that time. A) a-tB) a-s C) v-tC) s-t

APPLICATION In many experiments, a velocity versus position (v-s) profile is obtained. If we have a v-s graph for the tank truck, how can we determine its acceleration at position s = 1500 feet?

ERRATIC MOTION (Section 12.3) The approach builds on the facts that slope and differentiation are linked and that integration can be thought of as finding the area under a curve. Graphing provides a good way to handle complex motions that would be difficult to describe with formulas. Graphs also provide a visual description of motion and reinforce the calculus concepts of differentiation and integration as used in dynamics.

S-T GRAPH Plots of position vs. time can be used to find velocity vs. time curves. Finding the slope of the line tangent to the motion curve at any point is the velocity at that point (or v = ds/dt). Therefore, the v-t graph can be constructed by finding the slope at various points along the s-t graph.

V-T GRAPH Also, the distance moved (displacement) of the particle is the area under the v-t graph during time  t. Plots of velocity vs. time can be used to find acceleration vs. time curves. Finding the slope of the line tangent to the velocity curve at any point is the acceleration at that point (or a = dv/dt). Therefore, the acceleration vs. time (or a-t) graph can be constructed by finding the slope at various points along the v-t graph.

A-T GRAPH Given the acceleration vs. time or a-t curve, the change in velocity (  v) during a time period is the area under the a-t curve. So we can construct a v-t graph from an a-t graph if we know the initial velocity of the particle.

A-S GRAPH a-s graph ½ (v 1 ² – v o ²) = = area under the  s2s2 s1s1 a ds A more complex case is presented by the acceleration versus position or a-s graph. The area under the a-s curve represents the change in velocity (recall  a ds =  v dv ). This equation can be solved for v 1, allowing you to solve for the velocity at a point. By doing this repeatedly, you can create a plot of velocity versus distance.

V-S GRAPH Another complex case is presented by the velocity vs. distance or v-s graph. By reading the velocity v at a point on the curve and multiplying it by the slope of the curve (dv/ds) at this same point, we can obtain the acceleration at that point. Recall the formula a = v (dv/ds). Thus, we can obtain an a-s plot from the v-s curve.

EXAMPLE What is your plan of attack for the problem? Given: The s-t graph for a sports car moving along a straight road. Find: The v-t graph and a-t graph over the time interval shown.

EXAMPLE (continued) Solution:The v-t graph can be constructed by finding the slope of the s-t graph at key points. What are those? when 0 < t < 5 s; v 0-5 = ds/dt = d(3t 2 )/dt = 6 t m/s when 5 < t < 10 s; v 5-10 = ds/dt = d(30t  75)/dt = 30 m/s v-t graph v(m/s) t(s)

EXAMPLE (continued) Similarly, the a-t graph can be constructed by finding the slope at various points along the v-t graph. when 0 < t < 5 s; a 0-5 = dv/dt = d(6t)/dt = 6 m/s 2 when 5 < t < 10 s; a 5-10 = dv/dt = d(30)/dt = 0 m/s 2 a-t graph a(m/s 2 ) t(s)

CONCEPT QUIZ 1. If a particle starts from rest and accelerates according to the graph shown, the particle’s velocity at t = 20 s is A) 200 m/sB) 100 m/s C) 0D) 20 m/s 2. The particle in Problem 1 stops moving at t = _______. A) 10 sB) 20 s C) 30 sD) 40 s

GROUP PROBLEM SOLVING Find slopes of the v-t curve and draw the a-t graph. Find the area under the curve. It is the distance traveled. Finally, calculate average speed (using basic definitions!). Given: The v-t graph shown. Find:The a-t graph, average speed, and distance traveled for the s interval. Plan:

GROUP PROBLEM SOLVING (continued) Solution: Find the a–t graph: For 0 ≤ t ≤ 30 a = dv/dt = 1.0 m/s² For 30 ≤ t ≤ 90 a = dv/dt = -0.5 m/s² a-t graph a(m/s²) 3090 t(s)

GROUP PROBLEM SOLVING (continued) Now find the distance traveled:  s 0-30 =  v dt = (1/2) (30) 2 = 450 m  s =  v dt = (1/2) (-0.5)(90) (90) – (1/2) (-0.5)(30) 2 – 45(30) = 900 m s 0-90 = = 1350 m v avg(0-90) = total distance / time = 1350 / 90 = 15 m/s

ATTENTION QUIZ 1. If a car has the velocity curve shown, determine the time t necessary for the car to travel 100 meters. A)8 sB)4 s C)10 sD)6 s t v 6 s 75 t v 2.Select the correct a-t graph for the velocity curve shown. A)B) C)D) a t a t a t a t