Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University ECON 4550 Econometrics Memorial University of Newfoundland.

Slides:



Advertisements
Similar presentations
Inference in the Simple Regression Model
Advertisements

Lecture (11,12) Parameter Estimation of PDF and Fitting a Distribution Function.
Anthony Greene1 Simple Hypothesis Testing Detecting Statistical Differences In The Simplest Case:  and  are both known I The Logic of Hypothesis Testing:
Statistics.  Statistically significant– When the P-value falls below the alpha level, we say that the tests is “statistically significant” at the alpha.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 9 Hypothesis Testing Understandable Statistics Ninth Edition
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and.
The Multiple Regression Model Prepared by Vera Tabakova, East Carolina University.
The Simple Linear Regression Model: Specification and Estimation
EPIDEMIOLOGY AND BIOSTATISTICS DEPT Esimating Population Value with Hypothesis Testing.
Topic 2: Statistical Concepts and Market Returns
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Basic Business Statistics.
Inference about a Mean Part II
Inferences About Process Quality
Chapter 9 Hypothesis Testing.
Statistics for Managers Using Microsoft® Excel 5th Edition
©2006 Thomson/South-Western 1 Chapter 10 – Hypothesis Testing for the Mean of a Population Slides prepared by Jeff Heyl Lincoln University ©2006 Thomson/South-Western.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Tests of Hypotheses Based on a Single Sample.
AM Recitation 2/10/11.
Aaker, Kumar, Day Ninth Edition Instructor’s Presentation Slides
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 9 Hypothesis Testing.
Overview of Statistical Hypothesis Testing: The z-Test
Chapter 13 – 1 Chapter 12: Testing Hypotheses Overview Research and null hypotheses One and two-tailed tests Errors Testing the difference between two.
Overview Definition Hypothesis
Confidence Intervals and Hypothesis Testing - II
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Business Statistics,
Statistical inference: confidence intervals and hypothesis testing.
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University.
Fundamentals of Hypothesis Testing: One-Sample Tests
Section 9.1 Introduction to Statistical Tests 9.1 / 1 Hypothesis testing is used to make decisions concerning the value of a parameter.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Statistical Inferences Based on Two Samples Chapter 9.
Interval Estimation and Hypothesis Testing
Statistical Decision Making. Almost all problems in statistics can be formulated as a problem of making a decision. That is given some data observed from.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Random Regressors and Moment Based Estimation Prepared by Vera Tabakova, East Carolina University.
Statistical Inference
Testing of Hypothesis Fundamentals of Hypothesis.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section Inference about Two Means: Independent Samples 11.3.
Statistical Hypotheses & Hypothesis Testing. Statistical Hypotheses There are two types of statistical hypotheses. Null Hypothesis The null hypothesis,
May 2004 Prof. Himayatullah 1 Basic Econometrics Chapter 5: TWO-VARIABLE REGRESSION: Interval Estimation and Hypothesis Testing.
Lecture 16 Section 8.1 Objectives: Testing Statistical Hypotheses − Stating hypotheses statements − Type I and II errors − Conducting a hypothesis test.
1 Chapter 9 Hypothesis Testing. 2 Chapter Outline  Developing Null and Alternative Hypothesis  Type I and Type II Errors  Population Mean: Known 
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 8 Hypothesis Testing.
Chap 8-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 8 Introduction to Hypothesis.
Lecture 9 Chap 9-1 Chapter 2b Fundamentals of Hypothesis Testing: One-Sample Tests.
Interval Estimation and Hypothesis Testing Prepared by Vera Tabakova, East Carolina University.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall 9-1 σ σ.
Fall 2002Biostat Statistical Inference - Confidence Intervals General (1 -  ) Confidence Intervals: a random interval that will include a fixed.
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Chapter 9: Testing Hypotheses Overview Research and null hypotheses One and two-tailed tests Type I and II Errors Testing the difference between two means.
26134 Business Statistics Tutorial 11: Hypothesis Testing Introduction: Key concepts in this tutorial are listed below 1. Difference.
Inen 460 Lecture 2. Estimation (ch. 6,7) and Hypothesis Testing (ch.8) Two Important Aspects of Statistical Inference Point Estimation – Estimate an unknown.
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University ECON 4550 Econometrics Memorial University of Newfoundland.
© Copyright McGraw-Hill 2004
Statistical Inference Statistical inference is concerned with the use of sample data to make inferences about unknown population parameters. For example,
Understanding Basic Statistics Fourth Edition By Brase and Brase Prepared by: Lynn Smith Gloucester County College Chapter Nine Hypothesis Testing.
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University.
CHAPTER 7: TESTING HYPOTHESES Leon-Guerrero and Frankfort-Nachmias, Essentials of Statistics for a Diverse Society.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 7 Inferences Concerning Means.
Chapter 9 Hypothesis Testing Understanding Basic Statistics Fifth Edition By Brase and Brase Prepared by Jon Booze.
Statistical Decision Making. Almost all problems in statistics can be formulated as a problem of making a decision. That is given some data observed from.
4-1 Statistical Inference Statistical inference is to make decisions or draw conclusions about a population using the information contained in a sample.
Chapter 9 Introduction to the t Statistic
CONCEPTS OF HYPOTHESIS TESTING
Chapter 9 Hypothesis Testing.
Chapter 9 Hypothesis Testing.
Review of Statistical Inference
Interval Estimation and Hypothesis Testing
Presentation transcript:

Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University ECON 4550 Econometrics Memorial University of Newfoundland

 C.1 A Sample of Data  C.2 An Econometric Model  C.3 Estimating the Mean of a Population  C.4 Estimating the Population Variance and Other Moments  C.5 Interval Estimation

 C.6 Hypothesis Tests About a Population Mean  C.7 Some Other Useful Tests

Figure C.1 Histogram of Hip Sizes

The latter means that we refer to the estimator, so it applies whatever the sample values turn out to be

So the variance gets smaller as we increase N If we sampled randomly, so there is no correlation among observations:

Figure C.2 Increasing Sample Size and Sampling Distribution of

Central Limit Theorem: If Y 1,…,Y N are independent and identically distributed random variables with mean μ and variance σ 2, and, then has a probability distribution that converges to the standard normal N(0,1) as N  .

So this is just a “triangular “distribution...what happens if we look at the distribution of the transformed variable?

Figure C.3 Central Limit Theorem

 A powerful finding about the estimator of the population mean is that it is the best of all possible estimators that are both linear and unbiased.  A linear estimator is simply one that is a weighted average of the Y i ’s, such as, where the a i are constants.  “Best” means that it is the linear unbiased estimator with the smallest possible variance.

These are called “central” moments

The correction from N to N-1 is needed because the mean must be estimated before the variance can be estimated. We resort to using an estimate of the (unknown) mean instead:

Once we estimated sigma, we can use it to estimate the population variance: And the standard deviation

In statistics the Law of Large Numbers says that sample means converge to population averages (expected values) as the sample size N → ∞.

 C.5.1 Interval Estimation: σ 2 Known

Figure C.4 Critical Values for the N(0,1) Distribution

 Any one interval estimate may or may not contain the true population parameter value.  If many samples of size N are obtained, and intervals are constructed using (C.13) with (1  ) =.95, then 95% of them will contain the true parameter value.  A 95% level of “confidence” is the probability that the interval estimator will provide an interval containing the true parameter value. Our confidence is in the procedure, not in any one interval estimate.

 When σ 2 is unknown it is natural to replace it with its estimator

Now, of course, the interval’s width and centre will change across samples!

Remark: The confidence interval (C.15) is based upon the assumption that the population is normally distributed, so that is normally distributed. If the population is not normal, then we invoke the central limit theorem, and say that is approximately normal in “large” samples, which from Figure C.3 you can see might be as few as 30 observations. In this case we can use (C.15), recognizing that there is an approximation error introduced in smaller samples.

Components of Hypothesis Tests A null hypothesis, H 0 An alternative hypothesis, H 1 A test statistic A rejection region A conclusion

 The Null Hypothesis The “null” hypothesis, which is denoted H 0 (H-naught), specifies a value c for a parameter. We write the null hypothesis as A null hypothesis is the belief we will maintain until we are convinced by the sample evidence that it is not true, in which case we reject the null hypothesis.

 The Alternative Hypothesis  H 1 : μ > c If we reject the null hypothesis that μ = c, we accept the alternative that μ is greater than c.  H 1 : μ < c If we reject the null hypothesis that μ = c, we accept the alternative that μ is less than c.  H 1 : μ ≠ c If we reject the null hypothesis that μ = c, we accept the alternative that μ takes a value other than (not equal to) c.

 The Test Statistic A test statistic’s probability distribution is completely known when the null hypothesis is true, and it has some other distribution if the null hypothesis is not true.

Remark: The test statistic distribution in (C.16) is based on an assumption that the population is normally distributed. If the population is not normal, then we invoke the central limit theorem, and say that is approximately normal in “large” samples. We can use (C.16), recognizing that there is an approximation error introduced if our sample is small.

 The Rejection Region  If a value of the test statistic is obtained that falls in a region of low probability, then it is unlikely that the test statistic has the assumed distribution, and thus it is unlikely that the null hypothesis is true.  If the alternative hypothesis is true, then values of the test statistic will tend to be unusually “large” or unusually “small”, determined by choosing a probability , called the level of significance of the test.  The level of significance of the test  is usually chosen to be.01,.05 or.10.

 A Conclusion  W hen you have completed a hypothesis test you should state your conclusion, whether you reject, or do not reject, the null hypothesis.  Say what the conclusion means in the economic context of the problem you are working on, i.e., interpret the results in a meaningful way.

Figure C.5 The rejection region for the one-tail test of H 1 : μ = c against H 1 : μ > c

Figure C.6 The rejection region for the one-tail test of H 1 : μ = c against H 1 : μ < c

Figure C.7 The rejection region for a test of H 1 : μ = c against H 1 : μ ≠ c

Warning: Care must be taken here in interpreting the outcome of a statistical test. One of the basic precepts of hypothesis testing is that finding a sample value of the test statistic in the non-rejection region does not make the null hypothesis true! The weaker statements “we do not reject the null hypothesis,” or “we fail to reject the null hypothesis,” do not send a misleading message.

p-value rule: Reject the null hypothesis when the p- value is less than, or equal to, the level of significance α. That is, if p ≤ α then reject H 0. If p > α then do not reject H 0

 How the p-value is computed depends on the alternative. If t is the calculated value [not the critical value t c ] of the t- statistic with N−1 degrees of freedom, then:  if H 1 : μ > c, p = probability to the right of t  if H 1 : μ < c, p = probability to the left of t  if H 1 : μ ≠ c, p = sum of probabilities to the right of |t| and to the left of –|t|

Figure C.8 The p-value for a right-tail test

Figure C.9 The p-value for a two-tailed test

 A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to reject a null hypothesis, all the hypothesis test can establish is that the information in a sample of data is compatible with the null hypothesis. On the other hand, a statistical test can lead us to reject the null hypothesis, with only a small probability, , of rejecting the null hypothesis when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion than failing to reject it.

Correct Decisions The null hypothesis is false and we decide to reject it. The null hypothesis is true and we decide not to reject it. Incorrect Decisions The null hypothesis is true and we decide to reject it (a Type I error) The null hypothesis is false and we decide not to reject it (a Type II error)

Incorrect Decisions The null hypothesis is true and we decide to reject it (a Type I error). The probability of this error is the significance level. The null hypothesis is false and we decide not to reject it (a Type II error). This probability cannot be chosen by us nor calculated (since it depends on the true value of the parameter in question). However, we know that…

 The probability of a Type II error varies inversely with the level of significance of the test, , which is the probability of a Type I error. If you choose to make  smaller, the probability of a Type II error increases.  If the null hypothesis is μ = c, and if the true (unknown) value of μ is close to c, then the probability of a Type II error is high.  The larger the sample size N, the lower the probability of a Type II error, given a level of Type I error .

 If we fail to reject the null hypothesis at the  level of significance, then the value c will fall within a 100(1  )% confidence interval estimate of μ.  If we reject the null hypothesis, then c will fall outside the 100(1  )% confidence interval estimate of μ.

 We fail to reject the null hypothesis when or when

 C.7.1 Testing the population variance

Case 1: Population variances are equal

Case 2: Population variances are unequal

The normal distribution is symmetric, and has a bell-shape with a peakedness and tail-thickness leading to a kurtosis of 3. We can test for departures from normality by checking the skewness and kurtosis from a sample of data.

The Jarque-Bera test statistic allows a joint test of these two characteristics, If we reject the null hypothesis then we know the data have non- normal characteristics, but we do not know what distribution the population might have.

 C.9.1 Derivation of Least Squares Estimator

Figure C.18 The Sum of Squares Parabola For the Hip Data

For the hip data in Table C.1 Thus we estimate that the average hip size in the population is inches.

Slide C-71 Principles of Econometrics, 3rd Edition  alternative hypothesis  asymptotic distribution  BLUE  central limit theorem  central moments  estimate  estimator  experimental design  information measure  interval estimate  Lagrange multiplier test  Law of large numbers  level of significance  linear estimator  null hypothesis  point estimate  population parameter  p-value  random sample  rejection region  sample mean  sample variance  sampling distribution  sampling variation  standard error  standard error of the mean  standard error of the estimate  statistical inference  test statistic  two-tail tests  Type I error  Type II error  unbiased estimators