Computer Architecture (Hardware Engineering) Dr. BEN CHOI Ph.D. in EE (Computer Engineering), The Ohio State University System Performance Engineer, Lucent.

Slides:



Advertisements
Similar presentations
2 nd Year - 1 st Semester Asst. Lect. Mohammed Salim Computer Architecture I 1.
Advertisements

Computer Architecture & Organization
TK 2123 COMPUTER ORGANISATION & ARCHITECTURE
Dr Mohamed Menacer College of Computer Science and Engineering, Taibah University CS-334: Computer.
History of computers 1.
Computer Architecture Lecture Notes Spring 2005 Dr. Michael P. Frank Competency Area 1: Computer System Components Lecture 2.
COMPUTER ORGANIZATION CSNB123. COMPUTER ORGANIZATION CSNB123 Expected Course Outcome #Course OutcomeCoverage 1Explain the concepts that underlie modern.
Dr Mohamed Menacer College of Computer Science and Engineering Taibah University CE-321: Computer.
Computer system & Architecture Chapter 2 Computer Evolution and Performance.
L/O/G/O Introduction to Computer Systems and Performance Chapter 1 CS.216 Computer Architecture and Organization.
CHAPTER 2 COMPUTER EVOLUTION
Semiconductor Memory 1970 Fairchild Size of a single core –i.e. 1 bit of magnetic core storage Holds 256 bits Non-destructive read Much faster than core.
Computer Architecture – CSC 345 Dr. Robert Fisher —Office Hours: TTh – 11:00-11:45. Also after class. —Office: CSTI 607 —
Computer Organization and Architecture Lecture 1 Introduction.
Computer Organization & Assembly Language Computer Organization & Assembly Language © by DR. M. Amer.
01 Introduction – Computer Evolution & Performance Computer Organization.
Computer Architecture EKT 422 Chapter 2 Computer Evolution and Performance.
Functional View & History – Page 1 of 34CSCI 4717 – Computer Architecture CSCI 4717/5717 Computer Architecture Topic: Functional View & History Reading:
Led the WWII research group that broke the code for the Enigma machine proposed a simple abstract universal machine model for defining computability devised.
Chapter 2 Computer Evolution and Performance ECEG-3202 Computer Architecture and Organization.
Computer Architecture and Organization © by DR. M. Amer.
Computer Architecture Semester: III Credits: 6 (2+1) Lecture 1.
COMP 268 Computer Organization and Assembly Language A Brief History of Computing Architecture.
IAS By : Hajer Ahmed Mohammed. ENIAC - details Decimal (not binary) Its memory contained 20 accumulators of 10 digits. 10 vacuum tubes represented each.
Computer Evolution. ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables for.
Computer Evolution and Performance. ENIAC - background Electronic Numerical Integrator And Computer Electronic Numerical Integrator And Computer Eckert.
Computer Organization and Architecture 23 Feb 2009.
Chapter 5: Computer Systems Design and Organization Dr Mohamed Menacer Taibah University
Lecture 2 on Chapter 2 Computer Evolution and Performance
Main memory Processor Bus Cache memory Figure 1.5.The processor cache.
1 Chapter 2 Computer Evolution and Performance by Sameer Akram.
Computer Architecture
Evolution of the Computer. Zeroth Generation- Mechanical 1.Blaise Pascal –Mechanical calculator only perform Von Leibiniz –Mechanical.
Computer Evolution and Performance. ENIAC - background Electronic Numerical Integrator And Computer Electronic Numerical Integrator And Computer Eckert.
BITS Pilani Pilani Campus Pawan Sharma ES C263 Microprocessor Programming and Interfacing.
Chapter 2 Computer Evolution and Performance. ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania.
Computer Evolution and Performance. ENIAC - background Electronic Numerical Integrator And Computer Electronic Numerical Integrator And Computer Eckert.
Chapter 2 Computer Evolution and Performance. ENIAC - background ENIAC(Electronic Numerical Integrator And Computer) was world’s first general purpose.
William Stallings Computer Organization and Architecture 8th Edition
William Stallings Computer Organization and Architecture 6th Edition
William Stallings Computer Organization and Architecture 6th Edition
William Stallings Computer Organization and Architecture 7th Edition
Computer Architecture
Architecture & Organization 1
ECEG-3202 Computer Architecture and Organization
Computer Architecture and Organization
Architecture & Organization 1
BIC 10503: COMPUTER ARCHITECTURE
CSCI 4717/5717 Computer Architecture
Created by Vivi Sahfitri
AKT211 – CAO 02 – Computer Evolution and Performance
William Stallings Computer Organization and Architecture 7th Edition
William Stallings Computer Organization and Architecture 7th Edition
William Stallings Computer Organization and Architecture 7th Edition
William Stallings Computer Organization and Architecture 6th Edition
Presentation transcript:

Computer Architecture (Hardware Engineering) Dr. BEN CHOI Ph.D. in EE (Computer Engineering), The Ohio State University System Performance Engineer, Lucent Technologies - Bell Labs Innovations Pilot, FAA certified pilot for airplanes and helicopters CH01 TECH Computer Science

CH02 Computer Evolution and Performance A Brief History of Computers Designing for Performance Pentium and PowerPC Evolution CH02 TECH Computer Science

Computer Evolution

ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables for weapons Started 1943 Finished 1946  Too late for war effort Used until 1955

ENIAC - details Decimal (not binary) 20 accumulators of 10 digits Programmed manually by switches 18,000 vacuum tubes 30 tons 15,000 square feet 140 kW power consumption 5,000 additions per second

von Neumann/Turing Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions from memory and executing Input and output equipment operated by control unit Princeton Institute for Advanced Studies  IAS Completed 1952

Structure of von Nuemann machine Main Memory Arithmetic and Logic Unit Program Control Unit Input Output Equipment

IAS - details 1000 x 40 bit words  Binary number  2 x 20 bit instructions Set of registers (storage in CPU)  Memory Buffer Register  Memory Address Register  Instruction Register  Instruction Buffer Register  Program Counter  Accumulator  Multiplier Quotient

Structure of IAS - detail Main Memory Arithmetic and Logic Unit Program Control Unit Input Output Equipment MBR Arithmetic & Logic Circuits MQAccumulator MAR Control Circuits IBR IR PC Address Instructions & Data Central Processing Unit

Commercial Computers Eckert-Mauchly Computer Corporation UNIVAC I (Universal Automatic Computer) US Bureau of Census 1950 calculations Became part of Sperry-Rand Corporation Late 1950s - UNIVAC II  Faster  More memory

IBM Punched-card processing equipment the 701  IBM’s first stored program computer  Scientific calculations the 702  Business applications Lead to 700/7000 series

Transistors Replaced vacuum tubes Smaller Cheaper Less heat dissipation Solid State device Made from Silicon (Sand) Invented 1947 at Bell Labs William Shockley et al.

Transistor Based Computers Second generation machines NCR & RCA produced small transistor machines IBM 7000 DEC  Produced PDP-1

Microelectronics Literally - “small electronics” A computer is made up of gates, memory cells and interconnections These can be manufactured on a semiconductor e.g. silicon wafer

Generations of Computer Vacuum tube Transistor Small scale integration on  Up to 100 devices on a chip Medium scale integration - to 1971  100-3,000 devices on a chip Large scale integration  3, ,000 devices on a chip Very large scale integration to date  100, ,000,000 devices on a chip Ultra large scale integration  Over 100,000,000 devices on a chip

Moore’s Law Increased density of components on chip Gordon Moore - cofounder of Intel Number of transistors on a chip will double every year Since 1970’s development has slowed a little  Number of transistors doubles every 18 months Cost of a chip has remained almost unchanged Higher packing density means shorter electrical paths, giving higher performance Smaller size gives increased flexibility Reduced power and cooling requirements Fewer interconnections increases reliability

Growth in CPU Transistor Count

IBM 360 series 1964 Replaced (& not compatible with) 7000 series First planned “family” of computers  Similar or identical instruction sets  Similar or identical O/S  Increasing speed  Increasing number of I/O ports (i.e. more terminals)  Increased memory size  Increased cost

DEC PDP First minicomputer (after miniskirt!) Did not need air conditioned room Small enough to sit on a lab bench $16,000  $100k+ for IBM 360 Embedded applications & OEM BUS STRUCTURE

DEC - PDP-8 Bus Structure OMNIBUS Console Controller CPU Main Memory I/O Module I/O Module

Semiconductor Memory 1970 Fairchild A chip about size of a single core  i.e. 1 bit of magnetic core storage Holds 256 bits Non-destructive read Much faster than core Capacity approximately doubles each year

Intel  First microprocessor  All CPU components on a single chip  4 bit Followed in 1972 by 8008  8 bit  Both designed for specific applications  Intel’s first general purpose microprocessor

Speeding it up Pipelining On board cache On board L1 & L2 cache Branch prediction Data flow analysis Speculative execution

Performance Mismatch Processor speed increased Memory capacity increased Memory speed lags behind processor speed

Design for Performance: DRAM and Processor Characteristics

Trends in DRAM use

Performance Balance: Solutions Increase number of bits retrieved at one time  Make DRAM “wider” rather than “deeper” Change DRAM interface  Cache Reduce frequency of memory access  More complex cache and cache on chip Increase interconnection bandwidth  High speed buses  Hierarchy of buses

Internet Resources  Search for the Intel Museum Charles Babbage Institute PowerPC Intel Developer Home