6-1 Chapter 6 outline Introduction Wireless r Wireless links, characteristics r IEEE 802.11 wireless LANs (“wi-fi”) Mobility r Principles: addressing and.

Slides:



Advertisements
Similar presentations
1 Wireless and Mobile Networks Part 2 November 25, 2008 Department of Electrical and Computer Engineering University of Western Ontario ECE 436a Networking:
Advertisements

Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Monday March 19, 2007 Acknowledgement:
Wireless, Mobile Networks – Mobility. Wireless, Mobile Networks6-2 Mobility: Vocabulary home network: permanent “home” of mobile (e.g., /24)
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
Cellular and Mobile Wireless Networks (part 2) Advanced Computer Networks.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We’re making these slides freely available.
Overview r Ethernet r Hubs, bridges, and switches r Wireless links and LANs.
What we will cover… Home Networking: Network Address Translation (NAT) Mobile Routing.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
20 - Mobility 6: Wireless and Mobile Networks.
ICMP: Internet Control Message Protocol used by hosts, routers, gateways to communication network-level information –error reporting: unreachable host,
20 – Collision Avoidance, : Wireless and Mobile Networks6-1.
6: Wireless and Mobile Networks6-1 Chapter 6: Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone.
1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may be stationary (non- mobile) or.
CPSC 441: Wireless1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 hours.
6: Wireless and Mobile Networks6-1 Data Communication and Networks Lecture 5 Wireless Networks October 5, 2006.
Network Layer4-1 Router Architecture Overview Two key router functions: r run routing algorithms/protocol (RIP, OSPF, BGP) r switching datagrams from incoming.
6: Wireless and Mobile Networks Wireless LANs.
6/2/05CS118/Spring051 Chapter 6: Wireless and Mobile Networks r Cover the following sections only:  6.3: wireless LANs  6.5: mobility management:
5-1 Data Link Layer r What is Data Link Layer? r Wireless Networks m Wi-Fi (Wireless LAN) r Comparison with Ethernet.
1 Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Monday March 12, 2007 Acknowledgement:
12-1 Last time □ BGP policy □ Broadcast / multicast routing ♦ Spanning trees Source-based, group-shared, center-based ♦ Reverse path forwarding, pruning.
Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Wednesday March 14, 2007 Acknowledgement:
6: Wireless and Mobile Networks6-1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may.
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
Chapter 6 Wireless and Mobile Networks Link Layer5-1 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter6_1.
CHAPTER 6. Wireless, Mobile Networks6-2 Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired.
Lecture 4 Mobility Overview.
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Wireless,
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Wireless,
Computer networks 6: Wireless and Mobile Networks.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
CS 372 – introduction to computer networks* Announcements: r Final exam on Friday  The materials after chapters 1,2  Emphasis on the material covered.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 6 Wireless, WiFi and mobility.
ECE 4450:427/527 - Computer Networks Spring 2015
Lecture 1 Wireless Networks CPE 401/601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross All material copyright J.F.
Wi-Fi Wireless LANs Dr. Adil Yousif. What is a Wireless LAN  A wireless local area network(LAN) is a flexible data communications system implemented.
Mobile IP Overview and Discussion. 2 Spectrum of Mobility – from network perspective no mobility high mobility mobile user, using same access point mobile.
Wireless, Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics  CDMA 6.3 IEEE wireless LANs (“Wi-Fi”)
Chapter 6: Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! r computer nets: laptops,
Lecture 8 Mobility CPE 401/601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross All material copyright J.F Kurose and.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Wireless Access avoid collisions: 2 + nodes transmitting at same time CSMA - sense before transmitting –don’t collide with ongoing transmission by other.
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Wireless,
6: Wireless and Mobile Networks 6-1 Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We’re making these slides freely available.
Wireless and Mobility The term wireless is normally used to refer to any type of electrical or electronic operation which is accomplished without the use.
Location management. Mobile Switching Center Public telephone network, and Internet Mobile Switching Center Components of cellular network architecture.
6: Wireless and Mobile Networks6-1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may.
Network Layer4-1 Today Collect homework New homework: Ch4 #16,19,21-24,26,27,29,31 (half graded, as usual) Due Wednesday Oct 15 in class Final programming.
OVERVIEW Lecture 3 Wireless Networks (2). Lecture 3: Wireless Networks 2 CDMA: two-sender interference.
6: Wireless and Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE wireless.
Accommodating mobility with direct routing
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Mobility CPE 401/601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross All material copyright J.F Kurose and K.W. Ross,
1 Chapter 4 MAC Layer – Wireless LAN Jonathan C.L. Liu, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida.
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
6: Wireless and Mobile Networks 6-1 Chapter 6 Mobile IP A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
6: Wireless and Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE wireless.
6-1 Chapter 6 Wireless and Mobile Networks All material copyright J.F Kurose and K.W. Ross, All Rights Reserved.
Prof. Younghee Lee 1 1 Computer Networks u Lecture 11: Mobility Prof. Younghee Lee * Some part of this teaching materials are prepared referencing the.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
DMET 602: Networks and Media Lab
CPE 401/601 Computer Network Systems
Chapter 6 Wireless and Mobile Networks
CS 457 – Lecture 7 Wireless Networks
DMET 602: Networks and Media Lab
Presentation transcript:

6-1 Chapter 6 outline Introduction Wireless r Wireless links, characteristics r IEEE wireless LANs (“wi-fi”) Mobility r Principles: addressing and routing to mobile users r Mobility and higher- layer protocols Summary

6-2 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may be stationary (non-mobile) or mobile m wireless does not always mean mobility

6-3 Elements of a wireless network network infrastructure base station r typically connected to wired network r relay - responsible for sending packets between wired network and wireless host(s) in its “area” m e.g., cell towers, access points

6-4 Elements of a wireless network network infrastructure wireless link r typically used to connect mobiles to base station r can also be used as backbone link r multiple access protocol for link access r various data rates, transmission distance

6-5 Characteristics of selected wireless link standards Indoor 10-30m Outdoor m Mid-range outdoor 200m – 4 Km Long-range outdoor 5Km – 20 Km IS-95, CDMA, GSM 2G UMTS/WCDMA, CDMA2000 3G b a,g UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO 3G cellular enhanced (WiMAX) a,g point-to-point n Data rate (Mbps) data

6-6 Elements of a wireless network network infrastructure infrastructure mode r base station connects mobiles into wired network r handoff: mobile changes base station providing connection into wired network

6-7 Elements of a wireless network ad hoc mode r no base stations r nodes can only transmit to other nodes within link coverage r nodes organize themselves into a network: route among themselves

6-8 Wireless network taxonomy single hop multiple hops infrastructure (e.g., APs) no infrastructure host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet no base station, no connection to larger Internet (Bluetooth, ad hoc nets) host may have to relay through several wireless nodes to connect to larger Internet: mesh net no base station, no connection to larger Internet. May have to relay through other wireless nodes to reach some node: MANET, VANET

6-9 Wireless Link Characteristics (1) Differences from wired link …. m decreased signal strength: radio signal attenuates as it propagates through matter (path loss) m interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., cordless phone); devices (motors) interfere as well m multipath propagation: radio signal reflects off objects, reaching destination at slightly different times …. make communication across a wireless link much more “difficult”

6-10 Wireless network characteristics Multiple wireless senders and receivers create additional problems (carrier sensing is unreliable): A B C Hidden terminal problem r B, A hear each other r B, C hear each other r A, C can not hear each other means A, C unaware of their interference at B A B C A’s signal strength space C’s signal strength Signal attenuation: r B, A hear each other r B, C hear each other r A, C can not hear each other interfering at B

6-11 Chapter 6 outline Introduction Wireless r Wireless links, characteristics r IEEE wireless LANs (“wi-fi”) Mobility r Principles: addressing and routing to mobile users r Mobility and higher- layer protocols Summary

LAN architecture Basic Service Set (BSS) aka “cell” r in infrastructure mode contains: m wireless hosts, and m access point (AP): base station m adjacent APs should use different channels r in ad hoc mode, hosts only BSS 1 BSS 2 Internet hub, switch or router AP

: channels, association r frequency band divided into channels at different frequencies m AP admin chooses frequency for AP m interference possible: channel can be same as that chosen by neighboring AP r host: must associate with an AP m scans channels, listening for beacon frames containing AP’s name (SSID) and MAC address m selects AP to associate with m may perform authentication [more in Chapter 8] m will typically run DHCP to get IP address in AP’s subnet

: passive/active scanning AP 2 AP 1 H1 BBS 2 BBS Active Scanning : (1)Probe Request frame broadcast from H1 (2)Probe response frames sent from APs (3)Association Request frame sent: H1 to selected AP (4)Association Response frame sent: selected AP to H1 AP 2 AP 1 H1 BBS 2 BBS Passive Scanning: (1)beacon frames sent from APs (2)association Request frame sent: H1 to selected AP (3)association Response frame sent: selected AP to H1

6-15 IEEE : multiple access r avoid collisions: 2 + nodes transmitting at same time r : CSMA - sense before transmitting m don’t collide with ongoing transmission by other node r : no collision detection m difficult to receive (sense collisions) when transmitting due to weak received signals (fading) m can’t sense all collisions in any case: hidden terminal, fading m goal: avoid collisions: CSMA/C(ollision)A(voidance) A B C A B C A’s signal strength space C’s signal strength

6-16 Collision Avoidance: RTS-CTS exchange AP A B time RTS(A) RTS(B) RTS(A) CTS(A) DATA (A) ACK(A) reservation collision defer

6-17 hub or switch AP 2 AP 1 H1 BBS 2 BBS : mobility within same subnet router r H1 remains in same IP subnet: IP address can remain same r switch: which AP is associated with H1? m self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1

: WiMAX r like & cellular: base station model m transmissions to/from base station by hosts with omnidirectional antenna m base station-to-base station backhaul with point-to-point antenna r unlike : m range ~ 6 miles (“city rather than coffee shop”), highway speed m ~14 Mbps point-to-multipoint point-to-point

6-19 Chapter 6: Wireless and Mobile Networks Two important (but different) challenges r wireless: communication over wireless link r mobility: handling the mobile user who changes point of attachment to network

6-20 Chapter 6 outline Introduction Wireless r Wireless links, characteristics r IEEE wireless LANs (“wi-fi”) Mobility r Principles: addressing and routing to mobile users r Mobility and higher- layer protocols Summary

6-21 What is mobility? r spectrum of mobility, from the network perspective: no mobility high mobility mobile wireless user, using same access point mobile user, passing through multiple access point while maintaining ongoing connections ( like cell phone) mobile user, connecting/ disconnecting from network using DHCP.

6-22 Mobility: Vocabulary home network: permanent “home” of mobile (e.g., /24) Permanent address: address in home network, can always be used to reach mobile e.g., home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote wide area network correspondent

6-23 Mobility: more vocabulary Care-of-address: address in visited network. (e.g., 79, ) wide area network visited network: network in which mobile currently resides (e.g., /24) Permanent address: remains constant ( e.g., ) foreign agent: entity in visited network that performs mobility functions on behalf of mobile. correspondent: wants to communicate with mobile

6-24 How do you contact a mobile friend: r search all phone books? r call her parents? r expect her to let you know where he/she is? I wonder where Alice moved to? Consider friend frequently changing addresses, how do you find her?

6-25 Mobility: approaches r Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. m routing tables indicate where each mobile located m no changes to end-systems r Let end-systems handle it: m indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote m direct routing: correspondent gets foreign address of mobile, sends directly to mobile

6-26 Mobility: approaches r Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. m routing tables indicate where each mobile located m no changes to end-systems r let end-systems handle it: m indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote m direct routing: correspondent gets foreign address of mobile, sends directly to mobile not scalable to millions of mobiles

6-27 Mobility: registration End result: r Foreign agent knows about mobile r Home agent knows location of mobile wide area network home network visited network 1 mobile contacts foreign agent on entering visited network 2 foreign agent contacts home agent home: “this mobile is resident in my network”

6-28 Mobility via Indirect Routing wide area network home network visited network correspondent addresses packets using home address of mobile home agent intercepts packets, forwards to foreign agent foreign agent receives packets, forwards to mobile mobile replies directly to correspondent

6-29 Indirect Routing: comments r Mobile uses two addresses: m permanent address: used by correspondent (hence mobile location is transparent to correspondent) m care-of-address: used by home agent to forward datagrams to mobile r foreign agent functions may be done by mobile itself r triangle routing: correspondent-home-network- mobile m inefficient when correspondent, mobile are in same network

6-30 Indirect Routing: moving between networks r suppose mobile user moves to another network m registers with new foreign agent m new foreign agent registers with home agent m home agent update care-of-address for mobile m packets continue to be forwarded to mobile (but with new care-of-address) r mobility, changing foreign networks transparent: on going connections can be maintained!

6-31 Mobility via Direct Routing wide area network home network visited network correspondent requests, receives foreign address of mobile correspondent forwards to foreign agent foreign agent receives packets, forwards to mobile mobile replies directly to correspondent 3

6-32 Mobility via Direct Routing: comments r overcome triangle routing problem r non-transparent to correspondent: correspondent must get care-of-address from home agent m what if mobile changes visited network?

6-33 wide area network 1 foreign net visited at session start anchor foreign agent 2 4 new foreign agent 3 5 correspondent agent correspondent new foreign network Accommodating mobility with direct routing r anchor foreign agent: FA in first visited network r data always routed first to anchor FA r when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

6-34 Mobile IP r RFC 3344 r has many features we’ve seen: m home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet) r three components to standard: m indirect routing of datagrams m agent discovery m registration with home agent

6-35 Mobile IP: indirect routing Permanent address: Care-of address: dest: packet sent by correspondent dest: dest: packet sent by home agent to foreign agent: a packet within a packet dest: foreign-agent-to-mobile packet

6-36 Mobile IP: agent discovery r agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9) R bit: registration required H,F bits: home and/or foreign agent

6-37 Mobile IP: registration example

6-38 Wireless, mobility: impact on higher layer protocols r logically, impact should be minimal … m best effort service model remains unchanged m TCP and UDP can (and do) run over wireless, mobile r … but performance-wise: m packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff m TCP interprets loss as congestion, will decrease congestion window un-necessarily m delay impairments for real-time traffic m limited bandwidth of wireless links

6-39 Chapter 6 Summary Wireless r wireless links: m capacity, distance m channel impairments m CDMA r IEEE (“wi-fi”) m CSMA/CA reflects wireless channel characteristics Mobility r principles: addressing, routing to mobile users m home, visited networks m direct, indirect routing m care-of-addresses r impact on higher-layer protocols