Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Creating new states of matter:
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Spinor condensates beyond mean-field
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA Motivated by experiments of G.-B. Jo et al., Science (2009) Harvard-MIT David.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Dipolar interactions and magnetoroton softening in spinor condensates Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Vladimir Gritsev.
Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
System and definitions In harmonic trap (ideal): er.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Exploring many-body physics with synthetic matter
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Novel quantum states in spin-orbit coupled quantum gases
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
Chromium Dipoles in Optical Lattices
Presentation transcript:

Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne Crubellier (Laboratoire Aimé Cotton), J. Huckans, M. Gajda A.de Paz (PhD), A. Chotia, A. Sharma, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) Dipolar chromium BECs, and magnetism

Dipole-dipole interactions Anisotropic Long range Chromium (S=3): Van-der-Waals plus dipole-dipole interactions R Relative strength of dipole-dipole and Van-der-Waals interactions Cr:

Relative strength of dipole-dipole and Van-der-Waals interactions Stuttgart: d-wave collapse, PRL 101, (2008) See also Er PRL, 108, (2012) See also Dy, PRL, 107, (2012) … and Dy Fermi sea PRL, 108, (2012) … and heteronuclear molecules… Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007)) BEC collapses Cr: R BEC stable despite attractive part of dipole-dipole interactions

Villetaneuse, PRL 105, (2010) Stuttgart, PRL 95, (2005) Collective excitations Striction Anisotropic speed of sound Bragg spectroscopy Villetaneuse arXiv: (2012) Hydrodynamic properties of a BEC with weak dipole-dipole interactions Interesting but weak effects in a scalar Cr BEC

Polarized (« scalar ») BEC Hydrodynamics Collective excitations, sound, superfluidity Anisotropic Long-ranged R Hydrodynamics: non-local mean-field Magnetism: Atoms are magnets Chromium (S=3): involve dipole-dipole interactions Multicomponent (« spinor ») BEC Magnetism Phases, spin textures…

Exchange energy Coherent spin oscillation Chapman, Sengstock… Quantum effects! Klempt Stamper- Kurn Domains, spin textures, spin waves, topological states Stamper-Kurn, Chapman, Sengstock, Shin… Quantum phase transitions Stamper-Kurn, Lett Introduction to spinor physics

Main ingredients for spinor physics Spin-dependent contact interactions Spin exchange Quadratic Zeeman effect S=1,2,… Main new features with Cr S=3 7 Zeeman states 4 scattering lengths New structures Purely linear Zeeman effect Engineer artificial quadratic effect using tensor light shift Strong spin-dependent contact interactions And Dipole-dipole interactions 0 1

Dipolar interactions introduce magnetization-changing collisions Dipole-dipole interactions R without with

B=0: Rabi In a finite magnetic field: Fermi golden rule (losses) (x1000 compared to alkalis)

Important to control magnetic field Rotate the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Angular momentum conservation Dipolar relaxation, rotation, and magnetic field Ueda, PRL 96, (2006) Santos PRL 96, (2006) Gajda, PRL 99, (2007) B. Sun and L. You, PRL 99, (2007)

B=1G  Particle leaves the trap B=10 mG  Energy gain matches band excitation in a lattice B=.1 mG  Energy gain equals to chemical potential in BEC

S=3 Spinor physics with free magnetization Alkalis : - S=1 and S=2 only - Constant magnetization (exchange interactions)  Linear Zeeman effect irrelevant New features with Cr: -S=3 spinor (7 Zeeman states, four scattering lengths, a 6, a 4, a 2, a 0 ) -No hyperfine structure - Free magnetization Magnetic field matters ! Technical challenges : Good control of magnetic field needed (down to 100  G) Active feedback with fluxgate sensors Low atom number – atoms in 7 Zeeman states

1 Spinor physics of a Bose gas with free magnetization 2 (Quantum) magnetism in opical lattices S=3 Spinor physics with free magnetization Alkalis : - S=1 and S=2 only - Constant magnetization (exchange interactions)  Linear Zeeman effect irrelevant New features with Cr: -S=3 spinor (7 Zeeman states, four scattering lengths, a 6, a 4, a 2, a 0 ) -No hyperfine structure - Free magnetization Magnetic field matters !

Spin temperature equilibriates with mechanical degrees of freedom We measure spin-temperature by fitting the m S population (separated by Stern-Gerlach technique) At low magnetic field: spin thermally activated Related to Demagnetization Cooling expts, Pfau, Nature Physics 2, 765 (2006)

Spontaneous magnetization due to BEC BEC only in m S =-3 (lowest energy state) Cloud spontaneously polarizes ! Thermal population in Zeeman excited states A non-interacting BEC is ferromagnetic New magnetism, differs from solid-state PRL 108, (2012) T>Tc T<Tc a bi-modal spin distribution

Below a critical magnetic field: the BEC ceases to be ferromagnetic ! -Magnetization remains small even when the condensate fraction approaches 1 !! Observation of a depolarized condensate !! Necessarily an interaction effect B=100 µG B=900 µG PRL 108, (2012)

Santos PRL 96, (2006) Large magnetic field : ferromagneticLow magnetic field : polar/cyclic Ho PRL. 96, (2006) Cr spinor properties at low field PRL 106, (2011)

Density dependent threshold BECLattice Critical field0.26 mG1.25 mG 1/e fitted0.3 mG1.45 mG Load into deep 2D optical lattices to boost density. Field for depolarization depends on density Note: Possible new physics in 1D: Polar phase is a singlet-paired phase Shlyapnikov-Tsvelik NJP, 13, (2011)

Dynamics analysis Meanfield picture : Spin(or) precession Ueda, PRL 96, (2006) Natural timescale for depolarization: PRL 106, (2011) Produce BEC m=-3 Rapidly lower magnetic field

Open questions about equilibrium state Santos and Pfau PRL 96, (2006) Diener and Ho PRL. 96, (2006) Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions - Operate near B=0. Investigate absolute many-body ground-state -We do not (cannot ?) reach those new ground state phases -Quench should induce vortices… -Role of thermal excitations ? !! Depolarized BEC likely in metastable state !! Demler et al., PRL 97, (2006) Polar Cyclic Magnetic field

Magnetic phase diagram Measure T c (B) and M(T c,B) for different magnetic fields B Get T c (M) Quasi- Boltzmann distribution Bi-modal spin distribution Phase diagram adapted from J. Phys. Soc. Jpn, 69, 12, 3864 (2000) See also PRA, 59, 1528 (1999)

1 Spinor physics of a Bose gas with free magnetization -Thermodynamics: Spontaneous magnetization of the gas due to ferromagnetic nature of BEC -Spontaneous depolarization of the BEC due to spin-dependent interactions 2 Magnetism in 3D optical lattices -Spin and magnetization dynamics -Depolarized ground state at low magnetic field

Magnetization changing collisions Study quantum magnetism with dipolar gases ? Dipole-dipole interactions between real spins Hubard model at half filling, Heisenberg model of magnetism (effective spin model) Anisotropy Does not rely on Mott physics

Magnetization dynamics resonance for two atoms per site (~15 mG) Dipolar resonance when released energy matches band excitation Towards coherent excitation of pairs into higher lattice orbitals ? (Rabi oscillations) Mott state locally coupled to excited band

Strong anisotropy of dipolar resonances Anisotropic lattice sites See also PRL 106, (2011) At resonance May produce vortices in each lattice site (Einstein-de-Haas effect) (problem of tunneling)

Note: Lineshape of dipolar resonances probes number of atoms per site 3 and more atoms per sites loaded in lattice for faster loading B(kHz) Fraction in m=+3 Few-body physics ! The 3-atom state which is reached has entangled spin and orbital degrees of freedom Probe of atom squeezing in Mott state spin orbit

From now on : stay away from dipolar magnetization dynamics resonances, Spin dynamics at constant magnetization (<15mG) Control the initial state by a tensor light-shift A  polarized laser Close to a J  J transition (100 mW nm) In practice, a  component couples m S states Energy  m S 2 Quadratic effect allows state preparation

Adiabatic state preparation in 3D lattice t quadratic effect  Initiate spin dynamics by removing quadratic effect (2 atomes / site)

 On-site spin oscillations (  250 µs) vary time Load optical lattice quadratic effect (due to contact oscillations) (perdiod  220 µs) Up to now unknown source of damping

Long time-scale spin dynamics in lattice vary time Load optical lattice quadratic effect Sign for intersite dipolar interaction ? (two orders of magnitude slower than on-site dynamics)

Coherent spin oscillation at lower lattice depth The very long time scale excludes on-site oscillations where spin-exchange collisions dominate

Probing spin oscillations from superfluid to Mott Intersite coherent spin oscillation seems to need phase coherence between sites Superfluid more robust Probes magnetism from superfluid to insulator (Probes coherence length) (probes coherent spin oscillations)

At extremely low magnetic field (<1.5 mG): Spontaneous demagnetization of atoms in a 3D lattice 3D lattice Critical field 4kHz Threshold seen 5kHz -3 -2

Magnetization changing dipolar collisions introduce the spinor physics with free magnetization New spinor phases at extremely low magnetic fields Conclusions Tensor light-shift allow to reach new quantum phases

Magnetism in lattice Away from resonances: spin oscillations Spin-exchange Dipolar exchange Not robust in Mott regime Resonant magnetization dynamics Towards Einstein-de-Haas effect Anisotropy Few body vs many-body physics Spontaneous depolarization at low magnetic field Towards low-field phase diagram

A.de Paz, A. Chotia, A. Sharma B. Pasquiou, G. Bismut, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix