Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Nagoya Univ) Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick.

Slides:



Advertisements
Similar presentations
arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Advertisements

H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
The Thermostat Problem Rok Roskar Nick Cowan December 9 th 2004 Rok Roskar Nick Cowan December 9 th 2004.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
September 2005 Magnetic field excitation in galaxies.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
3-D Simulations of Magnetized Super Bubbles J. M. Stil N. D. Wityk R. Ouyed A. R. Taylor Department of Physics and Astronomy, The University of Calgary,
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Einstein Fellows Symposium 10/27/ Orly Gnat, Caltech In Collaboration with : Amiel Sternberg, Chris McKee.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
INfluence of turbulence on extinction in various environments Huirong Yan KIAA-PKU Collaboration: H. Hirashita, A. Lazarian, T. Nazowa, T. Kazasa.
Although there are regions of the galaxy M33 which show both high density neutral hydrogen gas and 24 micron emission, high density gas does not always.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
Krakow 2010 Galactic magnetic fields: MRI or SN-driven dynamo? Detlef Elstner Oliver Gressel Natali Dziourkevich Alfio Bonanno Günther Rüdiger.
Jonathan Slavin Harvard-Smithsonian CfA
Modelling Dwarf Galaxies with a Multi-Phase ISM Stefan Harfst 1,2 with: Ch. Theis 3,2 and G. Hensler 3,2 G. Hensler 3,2 1 Rochester Institute of Technology,
An introduction to the physics of the interstellar medium III. Hydrodynamics in the ISM Patrick Hennebelle.
The Life Cycle of Giant Molecular Clouds Charlotte Christensen.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
Cosmic Rays and Thermal Instability T. W. Hartquist, A. Y. Wagner, S. A. E. G. Falle, J. M. Pittard, S. Van Loo.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
CO, CS or other molecules? Maria Cunningham, UNSW.
Molecular clouds and gamma rays
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
1 Enrique Vázquez-Semadeni Adriana Gazol CRyA UNAM, México Collaborators: Thierry Passot (OCA) Jongsoo Kim (KASI) Dongsu Ryu (Chungnam U.) Ricardo González.
1 Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México.
Yutaka Fujita (Osaka U.) Fuijta, Takahara, Ohira, & Iwasaki, 2011, MNRAS, in press (arXiv: )
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
The Three-Phase Interstellar Medium
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
The structure of our Milky Way galaxy: a container of gas and stars arranged in various components with various properties.. Gaseous halo? ~ 6 x
Kashi1 Radio continuum observations of the Sombrero galaxy NGC4594 (M104) and other edge-on spirals Marita Krause MPIfR, Bonn Michael Dumke ESO,
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Structure and Stability of Phase Transition Layers in the Interstellar Medium Tsuyoshi Inoue, Shu-ichiro Inutsuka & Hiroshi Koyama 1 12 Kyoto Univ. Kobe.
Some atomic physics u H I, O III, Fe X are spectra –Emitted by u H 0, O 2+, Fe 9+ –These are baryons u For absorption lines there is a mapping between.
Dongsu Ryu (CNU), Magnetism Team in Korea
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Jet Propulsion Laboratory
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Roles of Cosmic Rays in Galaxy Clusters Yutaka Fujita (Osaka U)
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
VLBA Observations of AU- scale HI Structures Crystal Brogan (NRAO/NAASC) W. M. Goss (NRAO), T. J. W. Lazio (NRL) SINS Meeting, Socorro, NM, May 21, 2006.
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Kyoto Univ.) Collaboration with Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Phases et turbulence dans le milieu interstellaire Patrick Hennebelle Edouard Audit (CEA, Saclay) Shu-ichiro Inutsuka (Kyoto University), Robi Banerjee.
Flow-Driven Formation of Molecular Clouds: Insights from Numerical Models The Cypress Cloud, Spitzer/GLIMPSE, FH et al. 09 Lee Hartmann Javier Ballesteros-Paredes.
Distribution of Phases of the ISM - and how to see them
A Turbulent Local Environment
Properties of the thinnest cold HI clouds in the diffuse ISM
Instructor: Gregory Fleishman
Presentation transcript:

Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Nagoya Univ) Thanks to Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto Univ.) Patrick Hennebelle (Paris Obs. & ENS) Masahiro Nagashima (Nagasaki Univ.) Keywords: radiative cooling/heating, thermal instability, MHD, ambipolar diffusion, etc.

Polarization Map of Synchrotron Rad Depolarized region looks like Canal! No good theory yet!

 n  vs Height from Galactic Midplane Ferrière 2001, Rev.Mod.Phys. 73, 1031 H 2 gas ionized gas HI gas average number density  n  cm -3

Vertical (Quasi-)Hydrostatic Equilibrium? P CR > P mag > P gas  Parker Instability? P gas Ferrière 2001, Rev.Mod.Phys. 73, 1031

HI vs H 2 (Radial Direction) 内側では分子雲ガスの質量が多い

Various Components (Radial) NGC6946 MRI does not explain this! equipartition assumed

M51 Synchrotron Polarization (Fletcher & Beck 2005)

Dynamical Timescale of ISM Dynamical Three Phase Medium –McKee & Ostriker 1977 SN Explosion Rate in Galaxy… 1/(100yr) Expansion Time… 1Myr Expansion Radius… 100pc ( yr -1 )  ( 10 6 yr )  ( 100pc ) 3 = pc 3  V Gal.Disk Dynamical Timescale of ISM  1Myr « Timescale of Galactic Density Wave  100Myr (10kpc) 2  100pc

CGPS data in W5 HII region 21cm continuum (HII gas) T b =5K (bright) → 12.5K (dark) Image : 60  m dust emission Contour : 12 v LSR =-39.8 km/s  Ionized gas is surrounded with the dust shell.  Distribution of CO molecules show poor correlation with the dust shell.

CGPS data in W5 HII region HI 21cm v LSR =-39.8 km/s : T b =45K (bright) → 110K (dark)  Shell-like HI Self-Absorption feature is found around W5.  HISA feature overlaps with the dust shell. Hosokawa & SI 2007, ApJ 664, 363 See also recent Planck paper (arXiv ) on “Dark Gas” contour : 60μm dust emission

Radiative Equilibrium WNM (Warm Medium) CNM(Cold Medium) Solid: N H =10 19 cm -2, Dashed: cm -2

Radiative Cooling & Heating Solid: Cooling, Dashed: Heating Koyama & Inutsuka (2000) ApJ 532, 980, based on Wolfire et al grains

2D Evolution from Unstable Equilibrium Periodic Box Evolution without Shock Driving With Cooling/Heating and Thermal Conduction Without Physical Viscosity  Pr = 0

1D Shock Propagation into WNM Density-Pressure Diagram Density-Temperature Diagram –through unstable region unstable Koyama & SI 2000, ApJ 532, 980 See also Hennebelle & Pérault 1999

1D Shock Propagation into CNM Density-Pressure Diagram Density-Temperature Diagram CNM becomes thermally unstable with shock. Koyama & Inutsuka 2000,ApJ 532,980 unstable

Shock Propagation into WNM Hot Medium Color: Density Koyama & Inutsuka, 2001 Ambient ISM WNM

20 pc 10 4 *10 4 pixels 10,000 2 Hennebelle & Audit 07 Audit & Hennebelle D simulations Heitsch et al D

Property of "Turbulence"  v < C S,WNM  Kolmogorov-like Spectrum Hennebelle & Audit 2007

Property of "Turbulence"  v < C S,WNM  Kolmogorov-like Spectrum Hennebelle & Audit 2007 Armstrong, Rickett, & Spangler 1995

Evaporation of Spherical CNM in WNM Smaller CNM cloud evaporates: R~0.01pc clouds evaporate in ~Myr condensation evaporation Analytic Formula Nagashima, Koyama, Inutsuka & 2005, MNRAS 361, L25 Nagashima, Inutsuka, & Koyama 2006, ApJL 652, L41 Evaporation Timescale Size of CNM cloud CNM WNM RcRc

Evaporation of Spherical CNM in WNM If the ambient pressure is larger, the critical size of the stable cloud is smaller. "Tiny Scale Atomic Structure"? Braun & Kanekar 2005 Nagashima, Inutsuka, & Koyama 2006, ApJL 652, L41 Ambient Pressure Critical Radius CNM WNM RcRc

Instability of Transition Layer important in maintaining the “turbulence” Cold Medium Warm Medium Evaporation Front Thickness

Instability of Transition Layer Similar Mechanisms… 1) Darrieus-Landau (DL) Instability Flame-Front Instability # Important in SNe Ia # Effect of Magnetic Field See Dursi (2004) 2) Corrugation Instability in MHD Slow Shock – Edelman 1990 – Stone & Edelman 1995 unburnedburned Flame Front Thickness

Linear Analysis of New Instability Growth Rate (Myr -1 ) Cold Medium Warm Medium Evaporation Front T 2 WNM CNM T 1 11 22 Field length wavenumber k y /2  pc   step function approx. isobaric approx. unstable Inoue, Inutsuka, & Koyama 2006, ApJ 652, 1131

Summary Shock waves in ISM create Turbulent CNM embedded in WNM. In Turbulent Multi-Phase ISM –Thermal Instability, Magnetic Field, Ambipolar Diffusion, etc. What next Turbulent Diffusion of Magnetic Field Particle Acceleration Overall Modeling of Gaseous Galactic Halo  Good Information from CMB observations