Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany Experimental Tutorial on Quantum Criticality in strongly correlated.

Slides:



Advertisements
Similar presentations
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
Thermodynamics of phase formation in Sr 3 Ru 2 O 7 Andy Mackenzie University of St Andrews School of Physics and Astronomy University of St Andrews, UK.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Ferromagnetism and the quantum critical point in Zr1-xNbxZn2
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Quantum Phase Transitions and Exotic Phases in Metallic Helimagnets I.Ferromagnets and Helimagnets II.Phenomenology of MnSi III.Theory 1. Phase diagram.
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Magnetic transition in the Kondo lattice system CeRhSn2
Lecture schedule October 3 – 7, 2011  #1 Kondo effect  #2 Spin glasses  #3 Giant magnetoresistance  #4 Magnetoelectrics and multiferroics  #5 High.
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Electron coherence in the presence of magnetic impurities
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Heavy Fermion Superconductivity: Competition and Cooperation of Spin Fluctuations and Valence Fluctuations K. Miyake KISOKO, Osaka University KISOKO =
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
History of superconductivity
Self-generated instability of a ferromagnetic quantum-critical point
Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Magnetotransport in CeMIn 5 Scanning Tunneling Microscopy on heavy fermion.
Electronic Griffiths phases and dissipative spin liquids
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Magnetism on the verge of breakdown H. Aourag Laboratory for Study and Prediction of Materials URMER; University of Tlemcen  What is magnetism?  Examples.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
From Local Moment to Mixed-Valence Regime in Ce 1−x Yb x CoIn 5 alloys Carmen Almasan, Kent State University, DMR Ce 1−x Yb x CoIn 5 alloys have.
Qimiao Si Rice University KIAS, Oct 29, 2005 Heavy fermion metals: Global phase diagram, local quantum criticality, and experiments.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Quantum Criticality in Magnetic Single-Electron Transistors T p Physics of non-Fermi-liquid Metals Qimiao Si, Rice University, DMR Quantum criticality.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Lecture schedule October 3 – 7, 2011
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
First Order vs Second Order Transitions in Quantum Magnets I. Quantum Ferromagnetic Transitions: Experiments II. Theory 1. Conventional (mean-field) theory.
Breakdown of the Kondo effect at an antiferromagnetic instability Outline HF quantum critical points (QCPs) Kondo breakdown QCP in YbRh 2 Si 2 Superconductivity.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Qimiao Si Rice University
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Kondo Effect Ljubljana, Author: Lara Ulčakar
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Quantum phases and critical points of correlated metals
Quantum phases and critical points of correlated metals
Quantum phase transitions out of the heavy Fermi liquid
Deformation of the Fermi surface in the
by Yoshifumi Tokiwa, Boy Piening, Hirale S. Jeevan, Sergey L
Presentation transcript:

Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany Experimental Tutorial on Quantum Criticality in strongly correlated electron systems: E.g. Reviews on quantum criticality in strongly correlated electron systems: E.g. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001). G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001). H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, cond-mat/ H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, cond-mat/ Outline of : Outline of this talk: Introduction Introduction Quantum criticality in some antiferromagnetic HF systems (mainly those studied in Dresden) Quantum criticality in some antiferromagnetic HF systems (mainly those studied in Dresden) Ferromagnetic quantum criticality Ferromagnetic quantum criticality First part Second part

T. Westerkamp, J.-G. Donath, F. Weickert, J. Custers, R. Küchler, Y. Tokiwa, T. Radu, J. Ferstl, C. Krellner, O. Trovarelli, C. Geibel, G. Sparn, S. Paschen, J.A. Mydosh, F. Steglich K. Neumaier 1, E.-W. Scheidt 2, G.R. Stewart 3, A.P. Mackenzie 4, R.S. Perry 4,5, Y. Maeno 5, K. Ishida 5, E.D. Bauer 6, J.L. Sarrao 6, J. Sereni 7, M. Garst 8, Q. Si 9, C. Pépin 10 & P. Coleman 11 1 Walther Meissner Institute, Garching, Germany 2 Augsburg University, Germany 3 University of Florida, Gainesville FL, USA 4 St. Andrews University, Scotland 5 Kyoto University, Japan 6 Los Alamos National Laboratory, USA 7 CNEA Bariloche, Argentina 8 University of Minnesota, Minneapolis, USA 9 Rice University, Texas, USA 10 CEA-Saclay, France 11 Rutgers University, USA Collaborators

Lattice of certain f-electrons (most Ce, Yb or U) in metallic environment La 3+ : 4f 0, Ce 3+ : 4f 1 (J = 5/2), Yb 3+ : 4f 13 (J = 7/2), Lu 3+ : 4f 14 (6s 2 5d 1,l=3) partially filled inner 4f/5f shells  localized magnetic moment CEF splitting  effective S=1/2 f-electron based Heavy Fermion systems T T* ~ 5 – 50 K localized moments + conduction electrons moments bound in spin singlets

Microscopic model: Kondo effect (Jun Kondo ´63) local moment conduction el J: hybridization between local moments and conduction el.  AF coupling J < 0  lnT Kondo- minimum TKTK T5T5 T K : characteristic „Kondo“-temperature T < T K : formation of a bound state between local spin and conduction electron spin  local spin singlet

Anderson Impurity Model cond.- el f-elhybridization V sf on-site Coulomb repulsion U ff Formation of an (Abrikosov-Suhl) resonance at E F of width k B T*  extremely high N(E F )  heavy fermions

Landau Fermi liquid Lev Landau ´57 Excitations of system with strongly interacting electrons Free electron gas 1:1 correspondence

Magnetic instability in Heavy Fermion systems Fermi-surface: Doniach 1977

Itinerant (conventional) scenario Moriya, Hertz, Millis, Lonzarich, … g T TNTN gcgc TKTK NFL FL SDW OP fluctuations in space and time AF: z=2 (d eff = d+z) Heavy quasiparticles stay intact at QCP, scattering off critical SDW  NFL “unconventional” quantum criticality (Coleman, Pépin, Senthil, Si): Internal structure of heavy quasiparticles important:  4f-electrons localize Energy scales beyond those associated with slowing down of OP fluctuations

CeCu 6-x Au x : x c =0.1 inelastic neutron scattering O. Stockert et al., PRL 80 (1998): critical fluctuations quasi-2D ! A. Schröder et al., Nature 407 (2000): E/T S(q,  )T 0.75  0 T 0.75 H/T 1/  (q) T 0.75 non-Curie-Weiss behavior q-independent  local !! CeCu 6-x Au x

FLAF  = p, x, B NFL T Thermal expansion  = –1/V ∂S/∂p  = V -1 dV/dT Specific heat: C/T = ∂S/∂T Itinerant theory:  ~ T  z ~ T -1 (L. Zhu, M. Garst, A. Rosch, Q. Si, PRL 2003) Grüneisen ratio analysis   Resolution: < 0.01Å  l/l = ( l = 5 mm) for T  20 mK, B  20 Tesla

Experimental classification:conventional CeNi 2 Ge 2 CeIn 3-x Sn x CeCu 2 Si 2 CeCoIn 5 … unconventional CeCu 6-x Au x YbRh 2 Si 2…

CeNi 2 Ge 2 : very clean system close to zero-field QCP P. Gegenwart, F. Kromer, M. Lang, G. Sparn, C. Geibel, F. Steglich, Phys. Rev. Lett. 82, 1293 (1999) See also: F.M. Grosche, P. Agarwal, S.R. Julian, N.J. Wilson, R.K.W. Haselwimmer, S.J.S. Lister, N.D. Mathur, F.V. Carter, S.S. Saxena, G.G. Lonzarich, J. Phys. Cond. Matt. 12 (2000) L533–L540 T K = 30 K, paramagnetic ground state

~ aT 1/2 +bT CeNi 2 Ge 2 : thermal expansion R. Küchler, N. Oeschler, P. Gegenwart, T. Cichorek, K. Neumaier, O. Tegus, C. Geibel, J.A. Mydosh, F. Steglich, L. Zhu, Q. Si, Phys. Rev. Lett. 91, (2003) ~ aT  1/2 +b In accordance with prediction of itinerant theory

  for T  0 CeNi 2 Ge 2 : specific heat R. Küchler et al., PRL 91, (2003). T. Cichorek et al., Acta. Phys. Pol. B34, 371 (2003).

CeNi 2 Ge 2 : Grüneisen ratio  cr (T) ~ T −1/( z) prediction: = ½, z = 2  x = 1   observations in accordance with itinerant scenario INS: no hints for 2D critical fluct. Remaining problem: QCP not identified (would require negative pressure) critical components:  cr =  (T)−bT C cr =C(T)−  T  cr = V mol /  T  cr /C cr  cr ~ 1/T x with x=1 (−0.1 / +0.05)

Cubic CeIn 3-x Sn x N.D. Mathur et al., Nature 394 (1998) CeIn 3 R. Küchler, P. Gegenwart, J. Custers, O. Stockert, N. Caroca-Canales, C. Geibel, J. Sereni, F. Steglich, PRL 96, (2006) Increase of J by Sn substitution Increase of J by Sn substitution Volume change subdominant Volume change subdominant T N can be traced down to 20 mK ! T N can be traced down to 20 mK !

CeIn 3-x Sn x R. Küchler, P. Gegenwart, J. Custers, O. Stockert, N. Caroca-Canales, C. Geibel, J. Sereni, F. Steglich, PRL 96, (2006) Thermodynamics in accordance with 3D-SDW scenario Thermodynamics in accordance with 3D-SDW scenario Electrical resistivity:  (T) =  0 + A’T, however: large  0 ! Electrical resistivity:  (T) =  0 + A’T, however: large  0 !

CeCu 6-x M x C/T ~ log T (universal!) H.v. Löhneysen et al., PRL 1994, 1996 A. Rosch et al., PRL 1997 O. Stockert et al., PRL D-SDW scenario ? A. Schröder et al., Nature 2000 E/T scaling in  “(q,  )  (q) ~ {T  (q)}  0.75 for all q   locally critical scenario could we disprove 2D-SDW scenario thermodynamically?

CeCu 6-x Ag x E.-W. Scheidt et al., Physica B 321, 133 (2002). AF QCP

CeCu 5.8 Ag 0.2 R. Küchler, P. Gegenwart, K. Heuser, E.-W. Scheidt, G.R. Stewart and F. Steglich, Phys. Rev. Lett. 93, (2004).

CeCu 5.8 Ag 0.2 R. Küchler et al., Phys. Rev. Lett. 93, (2004) Incompatible with itinerant scenario!

YbRh 2 Si 2 : a clean system very close to a QCP P. Gegenwart et al., PRL 89, (2002).

=Bc=Bc C/T ~ T -1/3 0(b)0(b) J. Custers et al., Nature 424, 524 (2003) YbRh 2 (Si 0.95 Ge 0.05 ) 2

Stronger than logarithmic mass divergence ~b  1/3 b=b= 00 YbRh 2 (Si.95 Ge.05 ) 2 stronger than logarithmic mass divergence incompatible with itinerant theory T/b scaling FLAF  NFL T 1 2 J. Custers et al., Nature 424, 524 (2003)

Thermal expansion and Grüneisen ratio R. Küchler et al., PRL 91, (2003) Prediction:  cr (T) ~ T −1/( z) (L. Zhu, M. Garst, A. Rosch, Q. Si, PRL 2003) = ½, z=2 (AF)  x = 1 = ½, z=3 (FM)  x = ⅔

AF and FM critical fluctuations P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, F. Steglich, Phys. Rev. Lett. 94, (2005). B // c

Pauli-susceptibility P. Gegenwart et al., PRL 2005

29 Si – NMR on YbRh 2 Si 2 K. Ishida et al. Phys. Rev. Lett 89, (2002): Knight shift K ~  ’(q=0) ~  bulk Saturation in FL state at B > B c Spin-lattice relaxation rate 1/T 1 T ~ q-average of  ’’(q,  ) At B > 0.15 T: Koringa –relation S  1/T 1 TK 2 holds with dominating q=0 fluct. B  0.15 T: disparate behavior  Competing AF (q  0) and FM (q=0) fluctuations   ’’(q,  ) has a two component spectrum

Comparison: YbRh 2 Si 2 vs CeCu 5.9 Au 0.1 q q  q Q Q 0 CeCu 5.9 Au 0.1 YbRh 2 Si 2 AF and FM quantum critical fluct. YRS Spin-Ising symmetry Easy-plane symmetry

Hall effect evolution S. Paschen et al., Nature 432 (2004) 881: P. Coleman, C. Pépin, Q. Si, R. Ramazashvili, J. Phys. Condes. Matter 13 R723 (2001). Large change of  H though tiny  ordered ! SDW: continuous evolution of  H

Thermodynamic evidence for multiple energy scales at QCP Fermi surface change  clear signatures in thermodynamics Multiple energy scales at QCP P. Gegenwart et al., cond-mat/

Conclusions of part 1 There exist HF systems which display itinerant (conventional) quantum critical behavior: CeNi 2 Ge 2, CeIn 3-x Sn x, … YbRh 2 Si 2 : incompatible with itinerant scenario: - - Stronger than logarithmic mass divergence - - Grüneisen ratio divergence ~ T  Hall effect change - - Multiple energy scales vanish at quantum critical point QC fluctuations have a very strong FM component: - - Divergence of bulk susceptibility - - Highly enhanced SW ratio, small Korringa ratio, A/  0 2 scaling - - Relation to spin anisotropy (easy-plane)?

Metallic ferromagnetic QCPs ? Itinerant ferromagnets: QPT becomes generically first-order at low-T Experiments on ZrZn 2, MnSi, UGe 2, … M. Uhlarz, C. Pfleiderer, S.M. Hayden, PRL ´04 D. Belitz and T.R. Kirkpatrick, PRL ´99 1) 1)New route towards FM quantum criticality: metamagnetic QC(E)P e.g. in URu 2 Si 2, Sr 3 Ru 2 O 7, … 2) 2)What happens if disorder broadens the first-order QPT?

Layered perovskite ruthenates Sr n+1 Ru n O 3n+1 n=1: unconventional superconductor n=2: strongly enhanced paramagnet (SWR = 10) metamagnetic transition! n=3: itinerant el. Ferromagnet (T c = 105 K) n=  : itinerant el. Ferromagnet (T c = 160 K)

Field angle phase diagram on “second-generation” samples (RRR ~ 80) F i e l d [ t e s l a ] T e m p e r a t u r e [ m K ] a n g l e f r o m a b [ d e g r e e s ] S.A. Grigera et al. PRB 67, (2003) 8 T // c-axis Evidence for QC fluctuations: Diverging A(H) at H c (S.A. Grigera et al, Science 2001)

Thermal expansion P. Gegenwart, F. Weickert, M. Garst, R.S. Perry, Y. Maeno, Phys. Rev. Lett. 96, (2006) Calculation for itinerant metamagnetic QCEP

Behavior consistent with 2D QCEP scenario P. Gegenwart, F. Weickert, M. Garst, R.S. Perry, Y. Maeno, Phys. Rev. Lett. 96, (2006)

Thermal expansion on Sr 3 Ru 2 O 7 Compatible with underlying 2D QCEP at H c = 7.85 T  =0 marks accumulation points of entropy

T (K)  cm) B (T) Dominant elastic scattering  Formation of domains! Fine-structure near 8 Tesla S.A. Grigera, P. Gegenwart, R.A. Borzi, F. Weickert, A.J. Schofield, R.S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A.G. Green and A.P. Mackenzie, SCIENCE 306 (2004), 1154.

Thermodynamic analysis of fine-structure 1) 1)No clear phase transitions 2) 2)Signatures of quantum criticality survive in QC regime also: 1/(T 1 down to 0.3K!! (Ishida group) 3)First-order transitions have slopes pointing away from bounded state Clausius-Clapyeron:   Enhanced entropy in bounded regime!

Conclusion Sr 3 Ru 2 O 7 Quantum criticality in accordance with itinerant scenario for metamagentic quantum critical end point (d=2) Fine-structure close to 8 Tesla due to domain formation Formation of symmetry-broken phase (Pomeranchuk instability)? Unlikely because of enhanced entropy   Real-space phase separation? (C. Honerkamp, PRB 2005) liquid gas two- phase

Smeared Ferromagnetic Quantum Phase Transition Theoretical prediction: FM QPT generically first order at T = 0 [D. Belitz et al, PRL 1999] QCEP Sharp QPT can be destroyed by disorder exponential tail [T. Vojta, PRL 2003] [M. Uhlarz et al, PRL 2004 ]

The Alloy CePd 1-x Rh x   Orthorhombic CrB structure   CePd is ferromagnetic with T C = 6.6 K   CeRh has an intermediate valent ground state c Ce Pd,Rh   High T measurements suggested quantum critical point (dotted red line)   Detailed low T investigation: tail

AC Susceptibility in the Tail Region Crossover transition for x > 0.6 indicated by sharp cusps in  AC ‘ down to mK temperatures Frequency dependence at low frequencies and high sensitivity on tiny magnetic DC fields no long range order Maxima of  ‘(T) in phase diagram  ‘(T) in DC field

Spin Glass-like Behavior   Frequency shift (e.g. x=0.85:  T C /[T C  log( )] of 5%)   Spin glass-like behavior No maximum in specific heat but NFL behavior for x ≥ 0.85

Grüneisen parameter shows no divergence

”Kondo Cluster Glass“   Strong increase of T K for x ≥ 0.6 indicated by Weiss temperature  P, evolution of entropy and lattice parameters Possible reason for spin glass-like state: Variation of T K for Ce ions depending on Rh or Pd nearest neighbors leading distribution of local Kondo temperatures ”Kondo cluster glass“

Conclusion & Outlook Classification of different types of QCPs in HF systems (conventional vs unconventional) Importance of frustration in the spin interaction? Role of disorder? – e.g.: smearing of sharp 1 st order trans.