Sasha Kuntsevich Nimrod Teneh Vladimir Pudalov Spin-droplet state of an interacting 2D electron system M. Reznikov Magnetic order in clean low- density systems Methods of magnetization measurements Recharging Technique Experimental results Implications Technion
Electron gas with interactions Short range repulsive interaction 2nd order phase transition into ferromagnetic ordered state For a single-valley system Stoner (1947) Stoner instability
Ferromagnetic Bloch Instability Decreasing density Energy
Phase diagram Attaccalite et al. (2001) First order transition at r s ~20: Senatore et al. (2001) r s ~26
Clean system B. Tanatar and D.C. Ceperley (1989) ferromagnetic
Clean system Very small energy difference! antiferromagnetic ferromagnetic B. Tanatar and D.C. Ceperley (1989)
Methods: Shubnikov - de Haas beatings F. Fang and P. Stiles (1968), T. Okamoto at al., (1999), S. Vitkalov at al. (2000), V. Pudalov at.al., (2001) rsrs
V. Pudalov at al, (2001) Metal-Insulator Transition in a Silicon Inversion Layer gg
In-plane magnetoresistance S. Vitkalov et al. PRL 2001A. Shashkin et al. PLR, 2001
In-plane magnetoresistance A. Shashkin et al. PLR, 2001 Possible FM transition ??
Samples: Si Field effect transistors Russian samples, beginning of 80 th, Holland samples, mid 80 th Typical parameters 3.4 x10 4 cm 2
The Principle of the Recharging Technique Maxwell relation: Small correction
Diamagnetic contribution Capacitance contribution
Recharging Technique _ + VGVG Out Modulated magnetic field B+ Current Amplifier Ohmic contact Gate SiO 2 Si 2D electron gas
Expected behavior T=0, finite magnetic field gg Interactions M n No interactions n Interactions Prus et al,2003 B>T
B (T) g B B~2E F kT/4
Raw data, low fields Compare with single spins ∂M/∂n= B tanh(b), b=g B B/2T
1
The same characteristic magnetic field
Interactions n n No interactions Interactions d /dn(n), expectations
d /dn(n), T=1.7-13K
d /dn(n), T=0.6-4K
vs. Temperature
(n), T=1.7-13K
Magnetic moment at B=2T
Comparison with Transport Measurements
Main observations Possible scenario: few electron droplets
Droplet scenario vs theory Fermi-liquid expectations: Spontaneous large spin droplets in disordered metal Diffusion enhanced interactions in quantum dots Mean Field treatment: Andreev, Kamenev (1998) Numerics: Shepelyansky (2001) Narozhny, B. N. and Aleiner, I. L. and Larkin, A. I. (2000)
Conclusion: Problems :
Problem O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, PRB 2003 : Assumption: at large density the susceptibility is the renormalized Pauli one This assumption happened to be wrong!
Old results (Prus et al, 2003)
Field dependence of the magnetic moment
In-plane magnetoresistance A. Shashkin et al. PLR, 2001Fleury, Weintal, 2010.
Raw data
Susceptibility in at B=2T
d /dn(n), Holland sample
Stoner Ferromagnetic Instability Stoner (1947) Finkelstein (1983) For a short range repulsive interaction Diffusion enhanced interactions in quantum dots Mean Field treatment: Andreev, Kamenev (1998) Numerics: Shepelyansky (2001)
Clean system Very small energy difference! antiferromagnetic ferromagnetic A. Finkelstein (1983), Castellani at al.,(1984) Shekhter, A. and Finkel'stein, A. M (2005) B. Tanatar and D.C. Ceperley (1989)
Real system S=0 Bhatt and Lee (1982)
Real system S=0 Bhatt and Lee (1982)
Real system S=0 Bhatt and Lee (1982) Andreev, A. V. & Kamenev, A. (1998) Kurland, I. L. and Aleiner, I. L. and Altshuler, B. L. (2000)