Spectroscopic Parameters Molecules in the atmospheres

Slides:



Advertisements
Similar presentations
SOIR Data Workshop: Spectroscopy SOIR Spectroscopy A.C. Vandaele, R. Drummond, A. Mahieux, S. Robert, V. Wilquet SOIR Belgian Institute for Space.
Advertisements

The HITRAN Molecular Database
Climate-Greenhouse Effect. Greenhouse Glass, the material that greenhouse is made of, 1) transmit short-wavelength visible light, 2) absorbs and redirects.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Revision of Spectral Parameters for the B- and γ-Bands of Oxygen and their Validation using Atmospheric Spectra with the Sun as Source 66 th International.
Topics for Today Greenhouse Gases: How do they keep us warm?
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
9th HITRAN conference, June 2006, Cambridge, MA, USA ASSESSMENT OF THE GEISA AND GEISA/IASI SPECTROSCOPIC DATA QUALITY: trough comparisons with other.
ACE Linelist Needs for the Atmospheric Chemistry Experiment Chris Boone and Peter Bernath Univ. of Waterloo, Waterloo, Ontario, Canada HITRAN 2006 Conference.
* The number of transitions listed in this column are for the equivalent number of isotopologues and spectral range consistent with HITEMP2010 Comparison.
1 Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics Division Symposium on Laboratory Astrophysics.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Some Details of the Upcoming HITRAN Updates for the New Edition of 2008 Laurence S. Rothman, Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics,
Atmospheric Chemistry Experiment, ACE: Status and Spectroscopic Issues Peter Bernath, Nick Allen, Gonzalo Gonzalez Abad, Jeremy Harrison, Alex Brown, and.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Combining HITRAN line-by-line, UV cross section and PNNL databases for Modeling of LIBS and Raman LIDAR Denis Plutov, Dennis K. Killinger Laboratory for.
Information System to Access HITRAN via the Internet Yu. L. Babikov, S. N. Mikhailenko, S. A. Tashkun, V.E. Zuev Institute of Atmospheric Optics, Tomsk,
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Lecture 3: The greenhouse effect. Other concepts from Lecture 2 Temperature Scales Forms of Heat Transfer Electromagnetic Spectrum Stefan-Boltzmann Law.
Molecular Databases: Evolution and Revolution Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics.
Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the Band of Oxygen Iouli E. Gordon Laurence S. Rothman Samir Kassi Alain.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
EXPERIMENTAL ABSORPTION SPECTRA OF HOT CH 4 IN THE PENTAD AND OCTAD REGION ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
THE GEISA DATABASE OF INFRARED MOLECULAR PARAMETERS FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson (1), V. Capelle (1), L. Crépeau (1), R. Armante.
Pat Arnott, ATMS 749, UNR, 2008 Chapter 9: Absorption by Atmospheric Gases Visible and UV Absorption: due to electronic transitions. Monatomic - polyatomic.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
THE GEISA 2008 EDITION : PRESENTATION AND EVALUATION FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson (1), V. Capelle (1), L. Crépeau (1), N.A. Scott.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Infrared spectroscopy of halogen-containing species for atmospheric remote sensing Jeremy J. Harrison University of York.
THE GEISA DATABASE 2009 EDITION: A TOOL FOR HYPERSPECTRAL EARTH TROPOSPHERIC SATELLITE OBSERVATIONS STUDIES N. Jacquinet-Husson, L. Crépeau, R. Armante,
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Predicting half-widths and line shifts for water vapor transitions on the HITEMP database Robert R. Gamache a, Laurence S. Rothman b, and Iouli E. Gordon.
1. Databases of Infrared Molecular Parameters for Astronomy 0.7 to 1000 μm (14000 to 10 cm -1 ) Linda R. Brown Jet Propulsion Laboratory California Institute.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
ASSESSMENT OF SPECTROSCOPIC DATABASE ARCHIVES FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson, N.A. Scott, A. Ch é din, R. Armante Laboratoire de.
Temperature dependence of N 2 -, O 2 -, and air-broadened half- widths of water vapor transitions R. R. Gamache, B. K. Antony and P. R. Gamache Dept. of.
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
Topic 6. Without energy from the sun, conditions on Earth would be different. What is the energy that is radiated from the Sun? The energy that is radiated.
Tony Clough, Mark Shephard and Jennifer Delamere Atmospheric & Environmental Research, Inc. Colleagues University of Wisconsin International Radiation.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
Please read Chapter 4 in Archer Textbook
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
1 Atmospheric Radiation – Lecture 7 PHY Lecture 7 Thermal Radiation.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
HITRAN in the XXI th Century: Beyond Voigt and Beyond Earth L.S. Rothman, a I.E. Gordon, a C. Hill, a,b R.V. Kochanov, a,c P. Wcisło, a,d J. Wilzewski.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
Physical basis of the Greenhouse Effect -The “wavelength shift”- 1.Black body radiation, 2.Absorption spectra 3.Conservation of energy Energy & Environment.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
METO 621 CHEM Lesson 4. Total Ozone Field March 11, 1990 Nimbus 7 TOMS (Hudson et al., 2003)
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
1 Laurence S. Rothman Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics Division Cambridge MA 02138, USA 60 th OSU Symposium on.
Atmospheric Chemistry Experiment (ACE): Organic Molecules from Orbit Peter Bernath Department of Chemistry, University of York Heslington, York, UK.
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
The Greenhouse Effect. Natural heating of earth’s surface caused by greenhouse gases –CO 2 (Carbon Dioxide) –CH 3 (Methane) –N 2 O (Nitrous Oxide) –H.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
HITRAN2016 DATABASE PART II: OVERVIEW OF THE SPECTROSCOPIC PARAMETERS OF THE TRACE GASES Good Morning everyone. It’s my honor to be here and I would like.
HITRANonline: A New Structure and Interface for HITRAN
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Advertisement.
Chapter 9: Absorption by Atmospheric Gases
Presentation transcript:

Spectroscopic Parameters Molecules in the atmospheres for the Atmospheres of Extrasolar Planets Laurence S. Rothman Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics Division Cambridge MA 02138, USA Molecules in the atmospheres of extrasolar planets Paris, FRANCE 19-21 Novembre 2008 1

PAST 2

3

4

- Planets lose energy by infrared radiation 1824 ► Greenhouse effect - gases in the atmosphere increase the surface temperature of the Earth - Planets lose energy by infrared radiation (that Fourier called "chaleur obscure" or "dark heat") - Fourier transform spectroscopy (FTS) Jean Baptiste Joseph Fourier March 21, 1768 – May 16, 1830 5

Joseph-Marie Jacquard – 1801 Charles Babbage ~ 1820 HITRAN – 1973 Florida - 2000 Babbage once contacted the poet Alfred Tennyson in response to his poem "The Vision of Sin". Babbage wrote, "In your otherwise beautiful poem, one verse reads, Every moment dies a man, Every moment one is born. ... If this were true, the population of the world would be at a standstill. In truth, the rate of birth is slightly in excess of that of death. I would suggest [that the next version of your poem should read]: Every moment 1 1/16 is born. Strictly speaking, the actual figure is so long I cannot get it into a line, but I believe the figure 1 1/16 will be sufficiently accurate for poetry." 6

HITRAN law? Like Moore’s law (number of transistors on a printed circuit doubles every 2 years). Moore’s law is a violation of Murphy’s law… HITRAN gets better and better. 7

PRESENT 8

96 (2005) 139-204 9

(line-transition parameters) Global Data Files, Tables, and References File Structure of HITRAN Compilation JavaHAWKS Software Installers and Documentation Level 1 Level 2 HITRAN (line-transition parameters) IR Cross-sections UV Aerosol Refractive Indices Line Coupling CO2 data Global Data Files, Tables, and References Line-by-line Cross-sections Level 3 Supplemental Supplemental Alternate Molecule- by-molecule 10

HITRAN Line-by-line Parameters Field size Definition Mol I2 Molecule number Iso I1 Isotopologue no.(1 = most abundant, 2 = second most abundant, …) νif F12.6 Transition wavenumber in vacuum [cm-1] Sif E10.3 Intensity [cm-1/(molecule∙cm-2) @ 296K] Aif E10.3 Einstein A-coefficient [s-1] γair F5.4 Air-broadened half-width (HWHM) [cm-1/atm @ 296K] γself F5.4 Self-broadened half-width (HWHM) [cm-1/atm @ 296K] E″ F10.4 Lower-state energy [cm-1] nair F4.2 Temperature-dependence coefficient of γair δair F8.6 Air pressure-induced shift [cm-1/atm @ 296K] v′, v″ 2A15 Upper and Lower “global” quanta q′, q″ 2A15 Upper and Lower “local” quanta ierr 6I1 Uncertainty indices for νif , Sif , γair , γself , nair , δair iref 6I2 Reference pointers for νif , Sif , γair , γself , nair , δair * A1 Flag for line-coupling algorithm g′, g″ 2F7.1 Upper and Lower statistical weights 160-character total 11

12

Some New Updates H2O – water CO2 – carbon dioxide CH4 – methane ►Reassignment of visible spectra [Tennyson et al] ► Update of γself [Gamache et al] ► Implement IUPAC results [Tennyson et al] CO2 – carbon dioxide ► OCO line list for near IR [Brown, Miller et al] ► CDSD [Tashkun et al] ► Weak bands [Campargue et al] ► New 0 to 4800 cm-1 [Brown et al] ► CH3D 3300-3700 cm-1 [Brown et al] ► Line-shape calculations, supplemented with exp. CH4 – methane 13

Methane Challenge  Global fit  1.7 μm 2.3 μm new 14

More New Updates….. O3 – ozone O3 – ozone O3 – ozone O3 – ozone ► Major update 1632-5870 cm-1 [Reims/Tomsk] ► Improved line-shape algorithm O2 – Oxygen ► (UV) Corrected Schumann-Runge list ► Added Herzberg bands ► Improved A-band [Brown and co-workers] HNO3 – nitric acid ► Update 600-1790 cm-1 [Perrin et al] ► Further Improvements in 11-µm region [Gomez et al] 15 O3 – ozone O3 – ozone O3 – ozone A major update has been made for the first three isotopologues of ozone, thanks to the Reims-Tomsk collaborative effort [http://smpo.iao.ru]. The new data cover bands in the spectral range 1632 to 5870 cm-1, thereby extending the short wavelength coverage of HITRAN. In addition, an improved algorithm for incorporating ozone line-shape parameters has been applied to all ozone bands in the compilation. O3 – ozone A major update has been made for the first three isotopologues of ozone, thanks to the Reims-Tomsk collaborative effort [http://smpo.iao.ru]. The new data cover bands in the spectral range 1632 to 5870 cm-1, thereby extending the short wavelength coverage of HITRAN. In addition, an improved algorithm for incorporating ozone line-shape parameters has been applied to all ozone bands in the compilation. A major update has been made for the first three isotopologues of ozone, thanks to the Reims-Tomsk collaborative effort [http://smpo.iao.ru]. The new data cover bands in the spectral range 1632 to 5870 cm-1, thereby extending the short wavelength coverage of HITRAN. In addition, an improved algorithm for incorporating ozone line-shape parameters has been applied to all ozone bands in the compilation. A major update has been made for the first three isotopologues of ozone, thanks to the Reims-Tomsk collaborative effort [http://smpo.iao.ru]. The new data cover bands in the spectral range 1632 to 5870 cm-1, thereby extending the short wavelength coverage of HITRAN. In addition, an improved algorithm for incorporating ozone line-shape parameters has been applied to all ozone bands in the compilation.

Species Currently Covered (line-by-line portion) Molecule # of isotopo-logues H2O 6 HCl 2 COF2 1 CO2 8 HBr SF6 O3 5 HI H2S 3 N2O ClO HCOOH CO OCS HO2 CH4 H2CO O O2 HOCl ClON2O NO N2 NO+ SO2 HCN HOBr NO2 CH3Cl C2H4 NH3 H2O2 CH3OH HNO3 C2H2 CH3Br OH C2H6 CH3CN HF PH3 CF4 97 Isotopologues 16

Species Currently Covered (IR Cross-sections) Molecule Name SF6 Sulfur hexafluoride CHClFCF3 HCFC-124 ClON2O Chlorine nitrate CH3CCl2F HCFC-141b CCl4 Carbon Tetrachloride CH3CClF2 HCFC-142b N2O5 Dinitrogen pentoxide CHCl2CF2CF3 HCFC-225ca HNO4 Peroxynitric acid CClF2CF2CHClF HCFC-225cb C2F6 CFC-116 CH2F2 HFC-32 CCl3F CFC-11 CHF2CF3 HFC-125 CCl2F2 CFC-12 CHF2CHF2 HFC-134 CClF3 CFC-13 CFH2CF3 HFC-134a CF4 CFC-14 CF3CH3 HFC-143a C2Cl2F3 CFC-113 CH3CHF2 HFC-152a C2Cl2F4 CFC-114 SF5CF3 Trifluoromethyl sulfur pentafluoride C2ClF5 CFC-115 CH3C(O)OONO2 PAN CHCl2F HCFC-21 CH3CN Methyl cyanide CHClF2 HCFC-22 C6H6 Benzene CHCl2CF3 HCFC-123 17

IUPAC Water-Vapor Task Distributed Information System Collect all kinds of original information about the high-resolution spectroscopy of the water molecule Provide active storage of these data and related metadata Deliver information to users in different forms via the Internet 18

Ro-vibrational levels IUPAC vs HITRAN Ro-vibrational levels for H217O 19

Intersection des Banques de Données HITRAN et HITEMP 20

HITRAN vs HITEMP CO2 250 ppm CO2 5-meter source 100 feet above the surface 21

Figure 4. Comparison of CDSD and old HITEMP with measurments at 1550K Comparison of CDSD and old HITEMP with Measurements 22

HITEMP Line-absorption parameters in HITRAN format Constituents - Water Vapor: 0 to 25000 cm-1 @ 1000K,1500K - Carbon Dioxide: 400 to 10000 cm-1 @ 1000K - Carbon Monoxide: 0 to 10000 cm-1 @ solar temperature - Hydroxyl Radical: 0 to 19300 cm-1 @NLTE 23

New HITEMP Water List Assembly List created using BT2 database - for principal isotopologue, created at 296K with lines that have significant intensity at 4000K, J <50 Partition Function Experimental high-temperature line positions - Based on quantum numbers, replace frequencies with experimental ones (when available) HITRAN database Convert to HITRAN2004 format Combination of BT2, high-temperature experiments, and HITRAN Einstein A-coefficients, Statistical weights Line-shape parameters (widths, shifts, etc) HITEMP Water Line List 24

Improvements and Enhancements to the Compilation being considered ►More temperature-pressure sets of cross-sections (IR and UV) ►Improved database structure (IUPAC paradigm) ►High-temperature parameters (HITEMP) ►Molecules for astrophysics applications ►Refined line-shape parameters ►Additional line-mixing algorithms ►Collision-Induced Absorption bands 25

Access web site: http://cfa.harvard.edu/HITRAN Gives instructions for accessing compilation (free) Updates - Documentation - Links to related databases - HITRAN facts - Related conferences 26

JavaHAWKS Java version of HITRAN Atmospheric WorKStation Functions to manipulate and filter the HITRAN and associated molecular spectroscopic databases Plotting of line-by-line files and cross-section files Internet access to HITRAN and other related databases Links to abstracts that are the sources for HITRAN parameters Access to archival HITRAN documentation 27

Some Sources of Errors in the HITRAN Database Measurement Calibration Resolution Photometric accuracy Pressure, temperature, stability, … Methods of analysis Identification of lines Theory Perturbations Line shapes Lack of convergence Limit of basis sets Units Transcription 28

HITRAN International Advisory Committee 29

Typical Cross-section files (CFC-12) CCl2F2 (CFC-13) CClF3 (CFC-14) CF4 SF6 30

Figure 1. Comparison of different theoretical line lists with high-temperature experiments with high-temperature observation 31