Chapter 4 Transients.

Slides:



Advertisements
Similar presentations
Kevin D. Donohue, University of Kentucky1 Transient Response for Second- Order Circuits Characteristics Equations, Overdamped-, Underdamped-, and Critically.
Advertisements

Reading Assignment: Chapter 8 in Electric Circuits, 9th Ed. by Nilsson
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.1 Transient Behaviour  Introduction  Charging Capacitors and Energising.
E E 2315 Lecture 11 Natural Responses of Series RLC Circuits.
ECE 3336 Introduction to Circuits & Electronics
Transient Analysis DC Steady-State ELEC 308 Elements of Electrical Engineering Dr. Ron Hayne Images Courtesy of Allan Hambley and Prentice-Hall.
EE40 Summer 2006: Lecture 5 Instructor: Octavian Florescu 1 Announcements Lecture 3 updated on web. Slide 29 reversed dependent and independent sources.
Lect12EEE 2021 Differential Equation Solutions of Transient Circuits Dr. Holbert March 3, 2008.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Transients Analysis.
2nd Order Circuits Lecture 16.
ECE201 Final Exam Review1 Final Exam Review Dr. Holbert May 1, 2006.
EGR 2201 Unit 10 Second-Order Circuits  Read Alexander & Sadiku, Chapter 8.  Homework #10 and Lab #10 due next week.  Quiz next week.
Fundamentals of Electric Circuits Chapter 8
EE42/100 Lecture 9 Topics: More on First-Order Circuits Water model and potential plot for RC circuits A bit on Second-Order Circuits.
Lecture 181 Second-Order Circuits (6.3) Prof. Phillips April 7, 2003.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Transients Analysis.
1 Chapter 9 Differential Equations: Classical Methods A differential equation (DE) may be defined as an equation involving one or more derivatives of an.
Series RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in series as: the.
Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Parallel RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in parallel as:
Chapter 8 Second-Order Circuits
Fundamentals of Electric Circuits Chapter 8
ENGR-43_Lec-04b_2nd_Order_Ckts.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
Chapter 7. First and second order transient circuits
Series RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in series as: the.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 12 First Order Transient.
EENG 2610: Circuit Analysis Class 12: First-Order Circuits
2. Analogue Theory and Circuit Analysis 2.1 Steady-State (DC) Circuits 2.2 Time-Dependent Circuits DeSiaMorePowered by DeSiaMore1.
ES250: Electrical Science
Lecture 12 - Natural Response of Parallel RLC Circuits
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 16 Phasor Circuits, AC.
ELECTRICA L ENGINEERING Principles and Applications SECOND EDITION ALLAN R. HAMBLEY ©2002 Prentice-Hall, Inc. Chapter 4 Transients Chapter 4 Transients.
Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 9 The RLC Circuit.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 14 Second Order Transient.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc. Chapter 2 Resistive Circuits.
© The McGraw-Hill Companies, Inc McGraw-Hill 1 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I 5.
Chapter 4 Second Order Circuit (11th & 12th week)
1 Lecture #1 EGR 272 – Circuit Theory II Reading Assignment: Chapter 8 in Electric Circuits, 6th Edition by Nilsson Welcome to EGR 272 Circuit Theory II.
Step Response Series RLC Network.
Alexander-Sadiku Fundamentals of Electric Circuits
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc. Chapter 1 Introduction.
Chapter 4 Transients. 1.Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response.
SECOND ORDER CIRCUIT. Revision of 1 st order circuit Second order circuit Natural response (source-free) Forced response SECOND ORDER CIRCUIT.
Week 6 Second Order Transient Response. Topics Second Order Definition Dampening Parallel LC Forced and homogeneous solutions.
ELECTRICA L ENGINEERING Principles and Applications SECOND EDITION ALLAN R. HAMBLEY ©2002 Prentice-Hall, Inc. Chapter 5 Steady-State Sinusoidal Analysis.
Apply KCL to the top node ,we have We normalize the highest derivative by dividing by C , we get Since the highest derivative in the equation is.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 13 RC/RL Circuits, Time.
1 EKT101 Electric Circuit Theory Chapter 5 First-Order and Second Circuits.
Chapter 5 Transient Analysis Tai-Cheng Lee Electrical Engineering/GIEE 1.
First Order And Second Order Response Of RL And RC Circuit
Lecture 18 Review: Forced response of first order circuits
To obtain Coefficient A1 and A2
Chapter 5 First-Order and Second Circuits 1. First-Order and Second Circuits Chapter 5 5.1Natural response of RL and RC Circuit 5.2Force response of RL.
Network Analysis Week 10 RLC Circuits. Similar to RL and RC circuits, RLC circuits has two parts of responses, namely: natural response and forced response.
Source-Free Series RLC Circuits.
Lecture - 7 First order circuits. Outline First order circuits. The Natural Response of an RL Circuit. The Natural Response of an RC Circuit. The Step.
1 ECE 3301 General Electrical Engineering Section 30 Natural Response of a Parallel RLC Circuit.
Chapter 6 Second-Order Circuit.
Chapter 1: Introduction
Transient Circuit Analysis Cont’d.
RLC Circuits Dr. Iyad Jafar
First Order And Second Order Response Of RL And RC Circuit
EENG 2610: Circuit Analysis Class 13: Second-Order Circuits
EKT101 Electric Circuit Theory
1.4. The Source-Free Parallel RLC Circuits
Registered Electrical & Mechanical Engineer
* 07/16/96 What is Second Order?
Chapter 8 Second Order Circuits
INC 112 Basic Circuit Analysis
Apply KCL to the top node ,we have We normalize the highest derivative by dividing by C , we get Since the highest derivative in the equation is.
Presentation transcript:

Chapter 4 Transients

Chapter 4 Transients Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response.

3. Relate the transient response of first-order circuits to the time constant. 4. Solve RLC circuits in dc steady-state conditions. 5. Solve second-order circuits. 6. Relate the step response of a second-order system to its natural frequency and damping ratio.

Transients The time-varying currents and voltages resulting from the sudden application of sources, usually due to switching, are called transients. By writing circuit equations, we obtain integrodifferential equations.

Discharge of a Capacitance through a Resistance

The time interval τ = RC is called the time constant of the circuit.

DC STEADY STATE The steps in determining the forced response for RLC circuits with dc sources are: 1. Replace capacitances with open circuits. 2. Replace inductances with short circuits. 3. Solve the remaining circuit.

RL CIRCUITS The steps involved in solving simple circuits containing dc sources, resistances, and one energy-storage element (inductance or capacitance) are:

1. Apply Kirchhoff’s current and voltage laws to write the circuit equation. 2. If the equation contains integrals, differentiate each term in the equation to produce a pure differential equation. 3. Assume a solution of the form K1 + K2est.

4. Substitute the solution into the differential equation to determine the values of K1 and s . (Alternatively, we can determine K1 by solving the circuit in steady state as discussed in Section 4.2.) 5. Use the initial conditions to determine the value of K2. 6. Write the final solution.

RL Transient Analysis Time constant is

RC AND RL CIRCUITS WITH GENERAL SOURCES The general solution consists of two parts.

The particular solution (also called the forced response) is any expression that satisfies the equation. In order to have a solution that satisfies the initial conditions, we must add the complementary solution to the particular solution.

The homogeneous equation is obtained by setting the forcing function to zero. The complementary solution (also called the natural response) is obtained by solving the homogeneous equation.

Step-by-Step Solution Circuits containing a resistance, a source, and an inductance (or a capacitance) 1. Write the circuit equation and reduce it to a first-order differential equation.

2. Find a particular solution. The details of this step depend on the form of the forcing function. We illustrate several types of forcing functions in examples, exercises, and problems. 3. Obtain the complete solution by adding the particular solution to the complementary solution given by Equation 4.44, which contains the arbitrary constant K. 4. Use initial conditions to find the value of K.

SECOND-ORDER CIRCUITS

1. Overdamped case (ζ > 1). If ζ > 1 (or equivalently, if α > ω0), the roots of the characteristic equation are real and distinct. Then the complementary solution is In this case, we say that the circuit is overdamped.

2. Critically damped case (ζ = 1). If ζ = 1 (or equivalently, if α = ω0 ), the roots are real and equal. Then the complementary solution is In this case, we say that the circuit is critically damped.

3. Underdamped case (ζ < 1). Finally, if ζ < 1 (or equivalently, if α < ω0), the roots are complex. (By the term complex, we mean that the roots involve the square root of –1.) In other words, the roots are of the form in which j is the square root of -1 and the natural frequency is given by

In electrical engineering, we use j rather than i to stand for square root of -1, because we use i for current. For complex roots, the complementary solution is of the form In this case, we say that the circuit is underdamped.