ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Stability and the s-Plane Stability of an RC Circuit 1 st and 2 nd.

Slides:



Advertisements
Similar presentations
The Performance of Feedback Control Systems
Advertisements

System Function For A Closed-Loop System
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Chapter 4 Continuous Time Signals Time Response Continuous Time Signals Time Response.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Review Resources: Wiki: State Variables YMZ: State Variable Technique Wiki: Controllability.
Familiar Properties of Linear Transforms
A Typical Feedback System
Lecture 16: Continuous-Time Transfer Functions
Transient & Steady State Response Analysis
LTI system stability Time domain analysis
Series RLC Network. Objective of Lecture Derive the equations that relate the voltages across a resistor, an inductor, and a capacitor in series as: the.
Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Source-Free RLC Circuit
Out response, Poles, and Zeros
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Discrete-Time Fourier Series
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Definition of a System Examples Causality Linearity Time Invariance.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: First-Order Second-Order N th -Order Computation of the Output Signal.
Properties of the z-Transform
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Linearity Time Shift and Time Reversal Multiplication Integration.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Stability and the s-Plane Stability of an RC Circuit Routh-Hurwitz Stability.
NUAA-Control System Engineering
By Irfan Azhar Time Response. Transient Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Review Resources: Wiki: Superheterodyne Receivers RE: Superheterodyne.
Signal and Systems Prof. H. Sameti Chapter 9: Laplace Transform  Motivatio n and Definition of the (Bilateral) Laplace Transform  Examples of Laplace.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: First-Order Second-Order N th -Order Computation of the Output Signal Transfer.
Control Engineering Lecture# 10 & th April’2008.
Rational Transforms Consider the problem of finding the inverse Laplace transform for: where {ai} and {bi} are real numbers, and M and N are positive.
Signal and Systems Prof. H. Sameti Chapter 9: Laplace Transform  Motivatio n and Definition of the (Bilateral) Laplace Transform  Examples of Laplace.
Interconnections Blocks can be thought of as subsystems that make up a system described by a signal flow graph. We can reduce such graphs to a transfer.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Definition of a System Examples Causality Linearity Time Invariance Resources:
Step Response Series RLC Network.
Chapter 5 Transient and Steady State Response “I will study and get ready and someday my chance will come” Abraham Lincoln.
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
Linearity Recall our expressions for the Fourier Transform and its inverse: The property of linearity: Proof: (synthesis) (analysis)
Week 6 Second Order Transient Response. Topics Second Order Definition Dampening Parallel LC Forced and homogeneous solutions.
Motivation Thus far we have dealt primarily with the input/output characteristics of linear systems. State variable, or state space, representations describe.
Chapter 3 Dynamic Response The Block Diagram Block diagram is a graphical tool to visualize the model of a system and evaluate the mathematical relationships.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Stability Response to a Sinusoid Filtering White Noise Autocorrelation Power.
Subsea Control and Communications Systems
First-Order System Revisited
Lec 6. Second Order Systems
Signals & Systems Predicting System Performance February 27, 2013.
Lecture 7 Poles and Zeros Stability. Transfer Function Models General Representation wh where z i are the zeros p i are the poles n ≥ m to have a physically.
Modern Control System EKT 308 Steady-State and Stability.
Motivation for the Laplace Transform
Modeling Transient Response So far our analysis has been purely kinematic: The transient response has been ignored The inertia, damping, and elasticity.
Linear Constant-Coefficient Difference Equations
1 Time Response. CHAPTER Poles and Zeros and System Response. Figure 3.1: (a) System showing input and output; (b) Pole-zero plot of the system;
Modern Control System EKT 308
Stability Analysis . A system is BIBO stable if all poles or roots of
Lecture 13: Second-Order Systems Time Response Lecture 12: First-order systems Lecture 13: Second-order systems Lecture 14: Non-canonical systems ME 431,
Topics 1 Specific topics to be covered are: Discrete-time signals Z-transforms Sampling and reconstruction Aliasing and anti-aliasing filters Sampled-data.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Difference Equations Transfer Functions Block Diagrams Resources:
Source-Free Series RLC Circuits.
1 ECE 3301 General Electrical Engineering Section 30 Natural Response of a Parallel RLC Circuit.
System Dynamics Dr. Mohammad Kilani
3.0 Time Response OBJECTIVE
Lecture 7/8 Analysis in the time domain (II) North China Electric Power University Sun Hairong.
Page : PID Controller Chapter 3 Design of Discrete- Time control systems PID C ontroller.
Properties of the z-Transform
Automatic Control Theory CSE 322
LECTURE 30: SYSTEM ANALYSIS USING THE TRANSFER FUNCTION
Youngjune, Han Chapter 4 Time Response Youngjune, Han
Effects of Zeros and Additional Poles
LECTURE 18: FOURIER ANALYSIS OF CT SYSTEMS
Time Response, Stability, and
Presentation transcript:

ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Stability and the s-Plane Stability of an RC Circuit 1 st and 2 nd Order Systems Resources: MIT 6.003: Lecture 18 GW: Underdamped 2 nd -Order Systems CRB: System Response RVJ: RLC Circuits MH: Control Theory and Stability EC: Step Response Wiki: Routh-Hurwitz Stability Test TBCO: Routh-Hurwitz Tutorial MIT 6.003: Lecture 18 GW: Underdamped 2 nd -Order Systems CRB: System Response RVJ: RLC Circuits MH: Control Theory and Stability EC: Step Response Wiki: Routh-Hurwitz Stability Test TBCO: Routh-Hurwitz Tutorial LECTURE 28: 1 st and 2 nd Order Systems URL:

EE 3512: Lecture 28, Slide 1 Stability of CT Systems in the s-Plane Recall our stability condition for the Laplace transform of the impulse response of a CT linear time-invariant system: This implies the poles are in the left-half plane. This also implies: A system is said to be marginally stable if its impulse response is bounded: In this case, at least one pole of the system lies on the jω-axis. Recall periodic signals also have poles on the jω-axis because they are marginally stable. Also recall that the left-half plane maps to the inside of the unit circle in the z- plane for discrete-time (sampled) signals. We can show that circuits built from passive components (RLC) are always stable if there is some resistance in the circuit. LHP

EE 3512: Lecture 28, Slide 2 Stability of CT Systems in the s-Plane Example: Series RLC Circuit Using the quadratic formula: The RLC circuit is always stable. Why?

EE 3512: Lecture 28, Slide 3 Analysis of the Step Response For A 1 st -Order System Recall the transfer function for a 1 st -order differential equation: Define a time constant as the time it takes for the response to reach 1/e (37%) of its value. The time constant in this case is equal to -1/p. Hence, the real part of the pole, which is the distance of the pole from the jω-axis, and is the bandwidth of the pole, is directly related to the time constant. num = 1; den = [1 –p]; t = 0:0.05:10; y = step(num, den, t);

EE 3512: Lecture 28, Slide 4 Second-Order Transfer Function Recall our expression for a simple, 2 nd -order differential equation: Write this in terms of two parameters, ζ and ω n, related to the poles: From the quadratic equation: There are three types of interesting behavior of this system: Impulse Response Step Response

EE 3512: Lecture 28, Slide 5 Step Response For Two Real Poles When ζ > 1, both poles are real and distinct: There are two components to this response: When ζ = 1, both poles are real (s = ω n ) and repeated:

EE 3512: Lecture 28, Slide 6 Step Response For Two Real Poles (Cont.) ζ is referred to as the damping ratio because it controls the time constant of the impulse response (and the time to reach steady state); ω n is the natural frequency and controls the frequency of oscillation (which we will see next for the case of two complex poles). ζ > 1: The system is considered overdamped because it does not achieve oscillation and simply directly approaches its steady-state value. ζ = 1: The system is considered critically damped because it is on the verge of oscillation. Two Real Poles Both Real and Repeated

EE 3512: Lecture 28, Slide 7 Step Response For Two Complex Poles When 0 < ζ < 1, we have two complex conjugate poles: The transfer function can be rewritten as: The step response, after some simplification, can be written as: Hence, the response of this system eventually settles to a steady-state value of 1. However, the response can overshoot the steady-state value and will oscillate around it, eventually settling in to its final value.

EE 3512: Lecture 28, Slide 8 Analysis of the Step Response For Two Complex Poles ζ > 1: the overdamped system experiences an exponential rise and decay. Its asymptotic behavior is a decaying exponential. ζ = 1: the critically damped system has a fast rise time, and converges to the steady-state value in an exponetial fashion. 0 1: the underdamped system oscillates about the steady-state behavior at a frequency of ω d. Note that you cannot control the rise time and the oscillation behavior independently! What can we conclude about the frequency response of this system? Impulse Response Step Response

EE 3512: Lecture 28, Slide 9 Implications in the s-Plane Several important observations: The pole locations are: Since the frequency response is computed along the jω-axis, we can see that the pole is located at ±ω d. The bandwidth of the pole is proportional to the distance from the jω-axis, and is given by ζω n. For a fixed ω n, the range 0 <  < 1 describes a circle. We will make use of this concept in the next chapter when we discuss control systems. What happens if ζ is negative?

EE 3512: Lecture 28, Slide 10 RC Circuit Example: Find the response to a sinewave:. Solution: Again we see the solution is the superposition of a transient and steady-state response. The steady-state response could have been found by simply evaluating the Fourier transform at ω 0 and applying the magnitude scaling and phase shift to the input signal. Why? The Fourier transform is given by:

EE 3512: Lecture 28, Slide 11 Summary Reviewed stability of CT systems in terms of the location of the poles in the s-plane. Demonstrated that an RLC circuit is unconditionally stable. Analyzed the properties of the impulse response of a first-order differential equation. Analyzed the behavior of stable 2 nd -order systems. Characterized these systems in terms of three possible behaviors: overdamped, critically-damped, or overdamped. Discussed the implications of this in the time and frequency domains. Analyzed the response of an RC circuit to a sinewave. Next: Frequency response, Bode plots and filters.

EE 3512: Lecture 28, Slide 12 The Routh-Hurwitz Stability Test The procedures for determining stability do not require finding the roots of the denominator polynomial, which can be a daunting task for a high-order system (e.g., 32 poles). The Routh-Hurwitz stability test is a method of determining stability using simple algebraic operations on the polynomial coefficients. It is best demonstrated through an example. Consider: Construct the Routh array: Number of sign changes in 1 st column = number of poles in the RHPRLC circuit is always stable

EE 3512: Lecture 28, Slide 13 Routh-Hurwitz Examples Example: