LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.

Slides:



Advertisements
Similar presentations
Slides 13a: Introduction; Qualitative Models MGS3100 Chapter 13 Forecasting.
Advertisements

Forecasting OPS 370.
© 1997 Prentice-Hall, Inc. S2 - 1 Principles of Operations Management Forecasting Chapter S2.
Operations Management Forecasting Chapter 4
Chapter 11: Forecasting Models
Prepared by Lee Revere and John Large
PRODUCTION AND OPERATIONS MANAGEMENT
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Forecasting Ross L. Fink.
Chapter 12 - Forecasting Forecasting is important in the business decision-making process in which a current choice or decision has future implications:
Forecasting.
Forecasting To accompany Quantitative Analysis for Management, 8e
CHAPTER 3 Forecasting.
Chapter 3 Forecasting McGraw-Hill/Irwin
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 5-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ PERTEMUAN 14.
Chapter 13 Forecasting.
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Chapter 12 Roberta Russell & Bernard.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Mr. David P. Blain. C.Q.E. Management Department UNLV
Slides 13b: Time-Series Models; Measuring Forecast Error
1 1 Slide © 2009 South-Western, a part of Cengage Learning Chapter 6 Forecasting n Quantitative Approaches to Forecasting n Components of a Time Series.
Chapter 3 Forecasting McGraw-Hill/Irwin
Slides by John Loucks St. Edward’s University.
Samuel H. Huang, Winter 2012 Basic Concepts and Constant Process Overview of demand forecasting Constant process –Average and moving average method –Exponential.
Group No :- 9 Chapter 7 :- Demand forecasting in a supply chain. Members : Roll No Name 1118 Lema Juliet D 1136 Mwakatundu T 1140 Peter Naomi D 1143 Rwelamila.
Operations and Supply Chain Management
Chapter 4 Forecasting Mike Dohan BUSI Forecasting What is forecasting? Why is it important? In what areas can forecasting be applied?
The Importance of Forecasting in POM
IES 371 Engineering Management Chapter 13: Forecasting
CHAPTER 3 FORECASTING.
Demand Management and Forecasting
Forecasting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Forecasting OPS 370.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
MBA7020_05.ppt/June 27, 2005/Page 1 Georgia State University - Confidential MBA 7020 Business Analysis Foundations Time Series Forecasting June 27, 2005.
Forecasting Professor Ahmadi.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
Operations Management For Competitive Advantage 1Forecasting Operations Management For Competitive Advantage Chapter 11.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Operations Fall 2015 Bruce Duggan Providence University College.
1 1 Slide Forecasting Professor Ahmadi. 2 2 Slide Learning Objectives n Understand when to use various types of forecasting models and the time horizon.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
Maintenance Workload Forecasting
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna Forecasting.
OM3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights.
FORECASTING Kusdhianto Setiawan Gadjah Mada University.
Chapter 5 Forecasting. Eight Steps to Forecasting 1. Determine the use of the forecast—what objective are we trying to obtain? 2. Select the items or.
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
FORECASTING Introduction Quantitative Models Time Series.
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Forecas ting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Mechanical Engineering Haldia Institute of Technology
FORCASTING MODELS By Group-2.
Module 2: Demand Forecasting 2.
Welcome to MM305 Business Statistics with Quantitative Analysis
Prepared by Lee Revere and John Large
Demand Management and Forecasting
Presentation transcript:

LSS Black Belt Training Forecasting

Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force Composite Consumer Market Survey Time Series Methods Naive Moving Average Weighted Moving Average Exponential Smoothing Trend Analysis Seasonality Analysis Multiplicative Decomposition Causal Methods Simple Regression Analysis Multiple Regression Analysis

Model Differences Qualitative – incorporates judgmental & subjective factors into forecast. Time-Series – attempts to predict the future by using historical data. Causal – incorporates factors that may influence the quantity being forecasted into the model

Qualitative Forecasting Models Delphi method Iterative group process allows experts to make forecasts Participants: decision makers: experts who make the forecast staff personnel: assist by preparing, distributing, collecting, and summarizing a series of questionnaires and survey results respondents: group with valued judgments who provide input to decision makers

Qualitative Forecasting Models (cont) Jury of executive opinion Opinions of a small group of high level managers, often in combination with statistical models. Result is a group estimate. Sales force composite Each salesperson estimates sales in his region. Forecasts are reviewed to ensure realistic. Combined at higher levels to reach an overall forecast. Consumer market survey. Solicits input from customers and potential customers regarding future purchases. Used for forecasts and product design & planning

Forecast Error Bias - The arithmetic sum of the errors Mean Square Error - Similar to simple sample variance Variance - Sample variance (adjusted for degrees of freedom) Standard Error - Standard deviation of the sampling distribution MAD - Mean Absolute Deviation MAPE – Mean Absolute Percentage Error

Quantitative Forecasting Models Time Series Method Naïve Whatever happened recently will happen again this time (same time period) The model is simple and flexible Provides a baseline to measure other models Attempts to capture seasonal factors at the expense of ignoring trend

Naïve Forecast

Naïve Forecast Graph

Quantitative Forecasting Models Time Series Method Moving Averages Assumes item forecasted will stay steady over time. Technique will smooth out short-term irregularities in the time series.

Moving Averages

Moving Averages Forecast

Moving Averages Graph

Quantitative Forecasting Models Time Series Method Weighted Moving Averages Assumes data from some periods are more important than data from other periods (e.g. earlier periods). Use weights to place more emphasis on some periods and less on others.

Weighted Moving Average

Quantitative Forecasting Models Time Series Method Exponential Smoothing Moving average technique that requires little record keeping of past data. Uses a smoothing constant α with a value between 0 and 1. (Usual range 0.1 to 0.3)

Exponential Smoothing Data

Exponential Smoothing

Trend & Seasonality Trend analysis technique that fits a trend equation (or curve) to a series of historical data points. projects the curve into the future for medium and long term forecasts. Seasonality analysis adjustment to time series data due to variations at certain periods. adjust with seasonal index – ratio of average value of the item in a season to the overall annual average value. example: demand for coal & fuel oil in winter months.

Linear Trend Analysis Midwestern Manufacturing Sales

Least Squares for Linear Regression Midwestern Manufacturing

Least Squares Method Where = predicted value of the dependent variable (demand) X = value of the independent variable (time) a = Y-axis intercept b = slope of the regression line b =

Linear Trend Data & Error Analysis

Least Squares Graph

Seasonality Analysis Seasonal Index – ratio of the average value of the item in a season to the overall average annual value. Example: average of year 1 January ratio to year 2 January ratio. ( )/2 = Ratio = demand / average demand If Year 3 average monthly demand is expected to be 100 units. Forecast demand Year 3 January: 100 X = 96 units Forecast demand Year 3 May: 100 X = 131 units

Deseasonalized Data Going back to the conceptual model, solve for trend: Trend = Y / Season (96 units/ = ) This eliminates seasonal variation and isolates the trend Now use the Least Squares method to compute the Trend

Forecast Now that we have the Seasonal Indices and Trend, we can reseasonalize the data and generate the forecast. Y = Trend x Seasonal Index