Measurements in Chemistry

Slides:



Advertisements
Similar presentations
Base Units of the SI System Quantity Base Unit Abbreviation Second s
Advertisements

1 1.2 Measurement & Scientific Notation. 2 Measurement Measurement You make a measurement every time you Measure your height. Measure your height. Read.
Chapter 1: Measurements
Significant Figures and Scientific Notation. Significant Figures ► When using our calculators we must determine the correct answer; our calculators are.
Significant Figures When using our calculators we must determine the correct answer; our calculators and don’t know the correct answer. There are 2 different.
Chapter Two Measurements in Chemistry Fundamentals of General, Organic, and Biological Chemistry 5th Edition James E. Mayhugh Oklahoma City University.
Chapter 2 Measurements and Calculations.
Measurements in Chemistry
Measurements and Calculations
Chapter 1: Matter and Measurements
D = m/v (g/cm 3 )  Mass usually expressed in grams  Volume usually expressed in cm 3 or liters, etc.
Significant Figures ► ► When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct.
The Rules of the Game. Over hundreds of years ago, physicists and other scientists developed a traditional way of expressing their observations.  International.
Physical Properties: Melting Temperature Boiling Temperature Color
Measurement & Significant Figures
General, Organic, and Biological ChemistryCopyright © 2010 Pearson Education, Inc.1 Chapter 1 Measurements 1.1 Units of Measurement.
Measurements and Calculations Chapter 2 2.
Chapter 1 Measurements.
Significant Figures ► ► When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct.
Copyright©2004 by Houghton Mifflin Company. All rights reserved 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Measurements in Chemistry
What is measurement? Units of Measurement When do you Measure?
1 Measurement Quantitative Observation Comparison Based on an Accepted Scale –e.g. Meter Stick Has 2 Parts – the Number and the Unit –Number Tells Comparison.
Significant Figures ► ► When using our calculators we must determine the correct answer; our calculators are mindless and don’t know the correct answer.
Chapter 2 Measurements and Calculations. Chapter 2 Table of Contents Return to TOC Copyright © Cengage Learning. All rights reserved 2.1 Scientific Notation.
Every measurement must have a unit. Three targets with three arrows each to shoot. Can you hit the bull's-eye? Both accurate and precise Precise.
3.1 Measurements and Their Uncertainty
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
1 Chapter 2 - Measurements Section 2.1 Units of Measurement.
AIM: Significant Figures ► ► What are significant figures? ► On a blank sheet of paper Chapter Two 1.
Chapter Two Measurements in Chemistry. 10/20/2015 Chapter Two 2 Outline ►2.1 Physical Quantities ►2.2 Measuring Mass ►2.3 Measuring Length and Volume.
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
Chapter 1 Measurements 1.1 Units of Measurement.
Chapter 3 Scientific Measurement Measurement In chemistry, #’s are either very small or very large 1 gram of hydrogen = 602,000,000,000,000,000,000,000.
Significant Figures When using calculators we must determine the correct answer. Calculators are ignorant boxes of switches and don’t know the correct.
The Rules of the Game. Over hundreds of years ago, physicists and other scientists developed a traditional way of expressing their observations.  International.
Copyright©2004 by Houghton Mifflin Company. All rights reserved 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Chapter 1 Measurements. 1.1 Units of Measurement In chemistry we measure quantities. do experiments. calculate results. use numbers to report measurements.
V. Limits of Measurement 1. Accuracy and Precision.
Matter And Measurement 1 Matter and Measurement. Matter And Measurement 2 Length The measure of how much space an object occupies; The basic unit of length,
1 INTRODUCTION IV. Significant Figures. A. Purpose of Sig Figs Units of Measurement: Measurements indicate the magnitude of something Must include: –A.
Chapter Two Measurements in Chemistry Fundamentals of General, Organic and Biological Chemistry 6th Edition.
Sig-figs. Measurement and Significant Figures Every experimental measurement has a degree of uncertainty. The volume, V, at right is certain in the 10’s.
V. Limits of Measurement 1. Accuracy and Precision.
1 Chapter 1 Measurements 1.1 Units of Measurement Copyright © 2009 by Pearson Education, Inc.
2.4 Measurement and Significant Figures Every experimental measurement has a degree of uncertainty. The volume, V, at right is certain in the 10’s place,
Significant Figures ► ► Physical Science. What is a significant figure? ► There are 2 kinds of numbers: –Exact: the amount is known with certainty. 2.
Significant Figures ► ► When measuring or using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know.
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Scientific Measurement
Measurement.
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Chemistry: The Study of Change
ROUNDING AND SIGNIFICANT FIGURES
Unit 1- Introduction to Physics
Measurements in Chemistry
Significant Figures and Measurement
1.2 Measurement and Scientific Notation
Significant Figures in Calculations
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Chemistry 02/06-02/07/17.
Measurements and Calculations
Chapter 1 Elements and Measurements
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Measurements in Chemistry Review
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Significant Figures When using our calculators we must determine the correct answer; our calculators are mindless drones and don’t know the correct answer.
Significant Figures – Measurements
Presentation transcript:

Measurements in Chemistry Fundamentals of General, Organic, and Biological Chemistry 5th Edition Chapter Two Measurements in Chemistry James E. Mayhugh Oklahoma City University 2007 Prentice Hall, Inc.

Outline 2.1 Physical Quantities 2.2 Measuring Mass 2.3 Measuring Length and Volume 2.4 Measurement and Significant Figures 2.5 Scientific Notation 2.6 Rounding Off Numbers 2.7 Converting a Quantity from One Unit to Another 2.8 Problem Solving: Estimating Answers 2.9 Measuring Temperature 2.10 Energy and Heat 2.11 Density 2.12 Specific Gravity Chapter Two

2.1 Physical Quantities Physical properties such as height, volume, and temperature that can be measured are called physical quantities. Both a number and a unit of defined size is required to describe physical quantity. Chapter Two

A number without a unit is meaningless. To avoid confusion, scientists have agreed on a standard set of units. Scientists use SI or the closely related metric units. Prentice Hall © 2007 Chapter Two

Scientists work with both very large and very small numbers. Prefixes are applied to units to make saying and writing measurements much easier. The prefix pico (p) means “a trillionth of.” The radius of a lithium atom is 0.000000000152 meter (m). Try to say it. The radius of a lithium atom is 152 picometers (pm). Try to say it. Chapter Two

Frequently used prefixes are shown below. Chapter Two

2.2 Measuring Mass Mass is a measure of the amount of matter in an object. Mass does not depend on location. Weight is a measure of the gravitational force acting on an object. Weight depends on location. A scale responds to weight. At the same location, two objects with identical masses have identical weights. The mass of an object can be determined by comparing the weight of the object to the weight of a reference standard of known mass. Chapter Two

a) The single-pan balance with sliding counterweights a) The single-pan balance with sliding counterweights. (b) A modern electronic balance. Chapter Two

Relationships between metric units of mass and the mass units commonly used in the United States are shown below. Chapter Two

2.3 Measuring Length and Volume The meter (m) is the standard measure of length or distance in both the SI and the metric system. Volume is the amount of space occupied by an object. A volume can be described as a length3. The SI unit for volume is the cubic meter (m3). Chapter Two

Relationships between metric units of length and volume and the length and volume units commonly used in the United States are shown below and on the next slide. Chapter Two

A m3 is the volume of a cube 1 m or 10 dm on edge A m3 is the volume of a cube 1 m or 10 dm on edge. Each m3 contains (10 dm)3 = 1000 dm3 or liters. Each liter or dm3 = (10cm)3 =1000 cm3 or milliliters. Thus, there are 1000 mL in a liter and 1000 L in a m3. Chapter Two

The metric system is based on factors of 10 and is much easier to use than common U.S. units. Does anyone know how many teaspoons are in a gallon? Chapter Two

Exact Numbers An exact number is obtained when you count objects or use a defined relationship. Counting objects are always exact 2 soccer balls 4 pizzas Exact relationships, predefined values, not measured 1 foot = 12 inches 1 meter = 100 cm For instance is 1 foot = 12.000000000001 inches? No 1 ft is EXACTLY 12 inches.

Learning Check A. Exact numbers are obtained by 1. using a measuring tool 2. counting 3. definition B. Measured numbers are obtained by

Solution 2. counting 3. definition B. Measured numbers are obtained by A. Exact numbers are obtained by 2. counting 3. definition B. Measured numbers are obtained by 1. using a measuring tool

Learning Check Classify each of the following as an exact or a measured number. 1 yard = 3 feet The diameter of a red blood cell is 6 x 10-4 cm. There are 6 hats on the shelf. Gold melts at 1064°C.

Solution Classify each of the following as an exact (1) or a measured(2) number. This is a defined relationship. A measuring tool is used to determine length. The number of hats is obtained by counting. A measuring tool is required.

2.4 Measurement and Significant Figures Every experimental measurement has a degree of uncertainty. The volume, V, at right is certain in the 10’s place, 10mL<V<20mL The 1’s digit is also certain, 17mL<V<18mL A best guess is needed for the tenths place. Chapter Two

What is the Length? We can see the markings between 1.6-1.7cm We can’t see the markings between the .6-.7 We must guess between .6 & .7 We record 1.67 cm as our measurement The last digit an 7 was our guess...stop there

Learning Check What is the length of the wooden stick? 1) 4.5 cm

? 8.00 cm or 3 (2.2/8)

No further insignificant digits should be recorded. To indicate the precision of a measurement, the value recorded should use all the digits known with certainty, plus one additional estimated digit that usually is considered uncertain by plus or minus 1. No further insignificant digits should be recorded. The total number of digits used to express such a measurement is called the number of significant figures. All but one of the significant figures are known with certainty. The last significant figure is only the best possible estimate. Chapter Two

Below are two measurements of the mass of the same object Below are two measurements of the mass of the same object. The same quantity is being described at two different levels of precision or certainty. Chapter Two

When reading a measured value, all nonzero digits should be counted as significant. There is a set of rules for determining if a zero in a measurement is significant or not. RULE 1. Zeros in the middle of a number are like any other digit; they are always significant. Thus, 94.072 g has five significant figures. RULE 2. Zeros at the beginning of a number are not significant; they act only to locate the decimal point. Thus, 0.0834 cm has three significant figures, and 0.029 07 mL has four. Chapter Two

RULE 3. Zeros at the end of a number and after the decimal point are significant. It is assumed that these zeros would not be shown unless they were significant. 138.200 m has six significant figures. If the value were known to only four significant figures, we would write 138.2 m. RULE 4. Zeros at the end of a number and before an implied decimal point may or may not be significant. We cannot tell whether they are part of the measurement or whether they act only to locate the unwritten but implied decimal point. Chapter Two

Practice Rule #1 Zeros 6 3 5 2 4 All digits count Leading 0’s don’t Trailing 0’s do 0’s count in decimal form 0’s don’t count w/o decimal 0’s between digits count as well as trailing in decimal form 45.8736 .000239 .00023900 48000. 48000 3.982106 1.00040

2.5 Scientific Notation Scientific notation is a convenient way to write a very small or a very large number. Numbers are written as a product of a number between 1 and 10, times the number 10 raised to power. 215 is written in scientific notation as: 215 = 2.15 x 100 = 2.15 x (10 x 10) = 2.15 x 102 Chapter Two

Two examples of converting standard notation to scientific notation are shown below. Chapter Two

Two examples of converting scientific notation back to standard notation are shown below. Chapter Two

Scientific notation is helpful for indicating how many significant figures are present in a number that has zeros at the end but to the left of a decimal point. The distance from the Earth to the Sun is 150,000,000 km. Written in standard notation this number could have anywhere from 2 to 9 significant figures. Scientific notation can indicate how many digits are significant. Writing 150,000,000 as 1.5 x 108 indicates 2 and writing it as 1.500 x 108 indicates 4. Scientific notation can make doing arithmetic easier. Rules for doing arithmetic with numbers written in scientific notation are reviewed in Appendix A. Chapter Two

2.6 Rounding Off Numbers Often when doing arithmetic on a pocket calculator, the answer is displayed with more significant figures than are really justified. How do you decide how many digits to keep? Simple rules exist to tell you how. Chapter Two

Once you decide how many digits to retain, the rules for rounding off numbers are straightforward: RULE 1. If the first digit you remove is 4 or less, drop it and all following digits. 2.4271 becomes 2.4 when rounded off to two significant figures because the first dropped digit (a 2) is 4 or less. RULE 2. If the first digit removed is 5 or greater, round up by adding 1 to the last digit kept. 4.5832 is 4.6 when rounded off to 2 significant figures since the first dropped digit (an 8) is 5 or greater. If a calculation has several steps, it is best to round off at the end. Chapter Two

Practice Rule #2 Rounding Make the following into a 3 Sig Fig number Your Final number must be of the same value as the number you started with, 129,000 and not 129 1.5587 .0037421 1367 128,522 1.6683 106 1.56 .00374 1370 129,000 1.67 106

Examples of Rounding For example you want a 4 Sig Fig number 0 is dropped, it is <5 8 is dropped, it is >5; Note you must include the 0’s 5 is dropped it is = 5; note you need a 4 Sig Fig 4965.03   780,582 1999.5 4965 780,600 2000.

RULE 1. In carrying out a multiplication or division, the answer cannot have more significant figures than either of the original numbers. Chapter Two

RULE 2. In carrying out an addition or subtraction, the answer cannot have more digits after the decimal point than either of the original numbers. Chapter Two

Multiplication and division 32.27  1.54 = 49.6958 3.68  .07925 = 46.4353312 1.750  .0342000 = 0.05985 3.2650106  4.858 = 1.586137  107 6.0221023  1.66110-24 = 1.000000 49.7 46.4 .05985 1.586 107 1.000

Addition/Subtraction 25.5 32.72 320 +34.270 ‑ 0.0049 + 12.5 59.770 32.7151 332.5 59.8 32.72 330

Addition and Subtraction Look for the last important digit .71 82000 .1 .56 + .153 = .713 82000 + 5.32 = 82005.32 10.0 - 9.8742 = .12580 10 – 9.8742 = .12580 __ ___ __

Mixed Order of Operation 8.52 + 4.1586  18.73 + 153.2 = (8.52 + 4.1586)  (18.73 + 153.2) = = 8.52 + 77.89 + 153.2 = 239.61 = 239.6 2180. = 12.68  171.9 = 2179.692 =

Try Find the standard deviation for the following numbers: 7.691 g, 7.23 g, 7.892 g

Try 7.691 g, 7.23 g, 7.892 g 7.691 g 7.23 g 7.892 g 22.813 g 22.81 g = 7.603 g 3

Try  = 7.603 g 7.691 g – 7.603 g = .088 g 7.23 g – 7.603 g = -.37 g 7.892 g – 7.603 g = .289 g .01 g

Try .25 .01 = .01 g

2.7 Problem Solving: Converting a Quantity from One Unit to Another Factor-Label Method: A quantity in one unit is converted to an equivalent quantity in a different unit by using a conversion factor that expresses the relationship between units. (Starting quantity) x (Conversion factor) = Equivalent quantity Chapter Two

Writing 1 km = 0.6214 mi as a fraction restates it in the form of a conversion factor. This and all other conversion factors are numerically equal to 1. The numerator is equal to the denominator. Multiplying by a conversion factor is equivalent to multiplying by 1 and so causes no change in value. Chapter Two

When solving a problem, the idea is to set up an equation so that all unwanted units cancel, leaving only the desired units. Chapter Two

2.8 Problem Solving: Estimating Answers STEP 1: Identify the information given. STEP 2: Identify the information needed to answer. STEP 3: Find the relationship(s) between the known information and unknown answer, and plan a series of steps, including conversion factors, for getting from one to the other. STEP 4: Solve the problem. BALLPARK CHECK: Make a rough estimate to be sure the value and the units of your calculated answer are reasonable. Chapter Two

Example: Problem Solving How many minutes are in 1.4 days? Initial unit: 1.4 days Unit plan: days hr min Set up problem: 1.4 days x 24 hr x 60 min = 2.0 x 103 min 1 day 1 hr

Learning Check An adult human has 4650 mL of blood. How many gallons of blood is that? Unit plan: mL qt gallon Equalities: 1 quart = 946 mL 1 gallon = 4 quarts

Solution Unit plan: mL qt gallon Setup: 4650 mL x 1 qt x 1 gal = 1.23 gal 946 mL 4 qt 3 SF 3 SF exact 3 SF

? 150 pounds (American) is how many stones (British)? 1 pound = 265 dram 1 Gram = 1.71 dram 1.13 pennyweights = 1 Gram 1.21 scruples = 1 pennyweight 17.2 scruples = 1 stone ?

The following relationships are British liquid units. 1 hogshead = 7 firkin 18 pottle = 1 firkin 140 pottle = 1 puncheon 504 pottle = 1 tun How many hogsheads in 12.5 tuns?

A 60 watt light bulb is the how many horsepower? 3.41 Btu/hr = 1 watt 4.20 calorie/minute = 1 Btu/hr .0514 Foot-pound-force/second = 1 calorie/minute 1.825×10-3 horsepower = 1 Foot-pound-force/second

Learning Check If your pace on a treadmill is 65 meters per minute, how many minutes will it take for you to walk a distance of 7500 feet? The dosage ordered is 485 mg of Erythromycin four times a day (q.i.d). If the oral suspension contains 200 mg Erythromycin/5 mL, how many mL will be given in a day? The dimensions of a box are 12 inch by 11 inch by 5.5 inch. Calculate the volume of the box in cm3. There is 2.54 cm per inch.

2.9 Measuring Temperature Temperature is commonly reported either in degrees Fahrenheit (oF) or degrees Celsius (oC). The SI unit of temperature is the Kelvin (K). 1 Kelvin, no degree, is the same size as 1 oC. 0 K is the lowest possible temperature, 0 oC = 273.15 K is the normal freezing point of water. To convert, adjust for the zero offset. Temperature in K = Temperature in oC + 273.15 Temperature in oC = Temperature in K - 273.15 Chapter Two

Freezing point of H2O Boiling point of H2O 32oF 212oF 0oC 100oC 212oF - 32oF = 180oF covers the same range of temperature as 100oC - 0oC = 100oC covers. Therefore, a Celsius degree is exactly 180/100 = 1.8 times as large as a Fahrenheit degree. The zeros on the two scales are separated by 32oF. Chapter Two

Fahrenheit, Celsius, and Kelvin temperature scales. Chapter Two

Converting between Fahrenheit and Celsius scales is similar to converting between different units of length or volume, but is a little more complex. The different size of the degree and the zero offset must both be accounted for. oF = (1.8 x oC) + 32 oC = (oF – 32)/1.8 Chapter Two

2.10 Energy and Heat Energy: The capacity to do work or supply heat. Energy is measured in SI units by the Joule (J); the calorie is another unit often used to measure energy. One calorie (cal) is the amount of heat necessary to raise the temperature of 1 g of water by 1°C. A kilocalorie (kcal) = 1000 cal. A Calorie, with a capital C, used by nutritionists, equals 1000 cal. An important energy conversion factor is: 1 cal = 4.184 J Chapter Two

Specific heat is measured in units of cal/gC Not all substances have their temperatures raised to the same extent when equal amounts of heat energy are added. One calorie raises the temperature of 1 g of water by 1°C but raises the temperature of 1 g of iron by 10°C. The amount of heat needed to raise the temperature of 1 g of a substance by 1°C is called the specific heat of the substance. Specific heat is measured in units of cal/gC Chapter Two

(Heat Change) = (Mass) x (Specific Heat) x (Temperature Change) Knowing the mass and specific heat of a substance makes it possible to calculate how much heat must be added or removed to accomplish a given temperature change. (Heat Change) = (Mass) x (Specific Heat) x (Temperature Change) Using the symbols Δ for change, H for heat, m for mass, C for specific heat, and T for temperature, a more compact form is: ΔH = m×C×Δ T Chapter Two

Learning Check 1. How much energy is required to change the temperature of 15.0 g Fe from 18.5 C to 56.8 C? The specific heat of iron is 0.451 J/g·K. 2. (2.67) copper has specific heat of .092 cal/(g∙°C). When 52.7 cal of heat is added to a piece of copper, the temperature increases from 22.4 °C to 38.6 °C. What is the mass of the piece of copper? 3. If 34.8 J is required to change the temperature of 10.0 g of mercury by 25 K, what is the specific heat of mercury?

Learning Check ΔH = m×C×Δ T ΔH = 15.0 g×0.451 J×(56.8-18.5)C g·K 1. How much energy is required to change the temperature of 15.0 g Fe from 18.5 C to 56.8 C? The specific heat of iron is 0.451 J/g·K. ΔH = m×C×Δ T ΔH = 15.0 g×0.451 J×(56.8-18.5)C g·K ΔH = 259 J

Learning Check ΔH = m×C×Δ T 52.7 cal = m×.092 cal× (38.6-22.4)C gC 2. (2.67) copper has specific heat of .092 cal/(g∙°C). When 52.7 cal of heat is added to a piece of copper, the temperature increases from 22.4 °C to 38.6 °C. What is the mass of the piece of copper? ΔH = m×C×Δ T 52.7 cal = m×.092 cal× (38.6-22.4)C gC

Learning Check ΔH = m×C×Δ T 34.8 J = 10.0 g×C×25 K 3. If 34.8 J is required to change the temperature of 10.0 g of mercury by 25 K, what is the specific heat of mercury? ΔH = m×C×Δ T 34.8 J = 10.0 g×C×25 K

2.11 Density Density relates the mass of an object to its volume. Density is usually expressed in units of grams per cubic centimeter (g/cm3) for solids, and grams per milliliter (g/mL) for liquids. Mass (g) Density = Volume (mL or cm3) Chapter Two

Which is heavier, a ton of feathers or a ton of bricks? Which is larger? If two objects have the same mass, the one with the higher density will be smaller. Chapter Two

Mercury has a density of 13. 6 g/mL Mercury has a density of 13.6 g/mL. How many milliliters of mercury weigh 475 grams? 0.000155 mL 0.0286 mL 34.9 mL 6460 mL

Learning Check (2.75) What is the density of lithium metal ( in g/cm3) if a cylindrical wire with a diameter of 2.40 mm and a length of 15.0 cm has a mass of .3624 g; vcyln=r2l. The density of acetic acid is 1.05 g/mL. What is the volume of 275 g of acetic acid? A cube of iron has a mass of 15.37 g. If each side of the cube has dimensions of 1.25 cm, what is the density of iron?

Learning Check (2.75) What is the density of lithium metal ( in g/cm3) if a cylindrical wire with a diameter of 2.40 mm and a length of 15.0 cm has a mass of .3624 g; vcyln=r2l. Density = Mass (g) Volume (mL or cm3)

Learning Check The density of acetic acid is 1.05 g/mL. What is the volume of 275 g of acetic acid? Density = Mass (g) Volume (mL or cm3)

Learning Check A cube of iron has a mass of 15.37 g. If each side of the cube has dimensions of 1.25 cm, what is the density of iron? Density = Mass (g) Volume (mL or cm3)

2. 12 Specific Gravity Specific gravity (sp gr): density of a substance divided by the density of water at the same temperature. Specific gravity is unitless. The density of water is so close to 1 g/mL that the specific gravity of a substance at normal temperature is numerically equal to the density. Density of substance (g/ml) Specific gravity = Density of water at the same temperature (g/ml) Chapter Two

The specific gravity of a liquid can be measured using an instrument called a hydrometer, which consists of a weighted bulb on the end of a calibrated glass tube. The depth to which the hydrometer sinks when placed in a fluid indicates the fluid’s specific gravity. Chapter Two

Galileo’s Thermometer As temperature changes so do the density's of the solutions in the floating bulbs.

Chapter Summary Physical quantities require a number and a unit. Preferred units are either SI units or metric units. Mass, the amount of matter an object contains, is measured in kilograms (kg) or grams (g). Length is measured in meters (m). Volume is measured in cubic meters in the SI system and in liters (L) or milliliters (mL) in the metric system. Temperature is measured in Kelvin (K) in the SI system and in degrees Celsius (°C) in the metric system. Chapter Two

Chapter Summary Cont. The exactness of a measurement is indicated by using the correct number of significant figures. Significant figures in a number are all known with certainty except for the final estimated digit. Small and large quantities are usually written in scientific notation as the product of a number between 1 and 10, times a power of 10. A measurement in one unit can be converted to another unit by multiplying by a conversion factor that expresses the exact relationship between the units. Chapter Two

Chapter Summary Cont. Problems are solved by the factor-label method. Units can be multiplied and divided like numbers. Temperature measures how hot or cold an object is. Specific heat is the amount of heat necessary to raise the temperature of 1 g of a substance by 1°C. Density relates mass to volume in units of g/mL for a liquid or g/cm3 for a solid. Specific gravity is density of a substance divided by the density of water at the same temperature. Chapter Two

End of Chapter 2 Chapter Two