RAID Storage EEL4768, Fall 2009 Dr. Jun Wang Slides Prepared based on D&P Computer Architecture textbook, etc.

Slides:



Advertisements
Similar presentations
Redundant Array of Independent Disks (RAID) Striping of data across multiple media for expansion, performance and reliability.
Advertisements

A CASE FOR REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAID) D. A. Patterson, G. A. Gibson, R. H. Katz University of California, Berkeley.
RAID Oh yes Whats RAID? Redundant Array (of) Independent Disks. A scheme involving multiple disks which replicates data across multiple drives. Methods.
RAID Redundant Array of Independent Disks
CSCE430/830 Computer Architecture
“Redundant Array of Inexpensive Disks”. CONTENTS Storage devices. Optical drives. Floppy disk. Hard disk. Components of Hard disks. RAID technology. Levels.
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
R.A.I.D. Copyright © 2005 by James Hug Redundant Array of Independent (or Inexpensive) Disks.
CSE521: Introduction to Computer Architecture Mazin Yousif I/O Subsystem RAID (Redundant Array of Independent Disks)
Lecture 36: Chapter 6 Today’s topic –RAID 1. RAID Redundant Array of Inexpensive (Independent) Disks –Use multiple smaller disks (c.f. one large disk)
CSCE 212 Chapter 8 Storage, Networks, and Other Peripherals Instructor: Jason D. Bakos.
RAID Technology. Use Arrays of Small Disks? 14” 10”5.25”3.5” Disk Array: 1 disk design Conventional: 4 disk designs Low End High End Katz and Patterson.
CS 430 – Computer Architecture Disks
I/O Systems Processor Cache Memory - I/O Bus Main Memory I/O Controller Disk I/O Controller I/O Controller Graphics Network interrupts.
REDUNDANT ARRAY OF INEXPENSIVE DISCS RAID. What is RAID ? RAID is an acronym for Redundant Array of Independent Drives (or Disks), also known as Redundant.
EECC551 - Shaaban #1 Lec # 13 Winter Magnetic Disk CharacteristicsMagnetic Disk Characteristics I/O Connection StructureI/O Connection Structure.
Disk Storage SystemsCSCE430/830 Disk Storage Systems CSCE430/830 Computer Architecture Lecturer: Prof. Hong Jiang Courtesy of Yifeng Zhu (U. Maine) Fall,
Computer ArchitectureFall 2007 © November 28, 2007 Karem A. Sakallah Lecture 24 Disk IO and RAID CS : Computer Architecture.
CS61C L16 Disks © UC Regents 1 CS61C - Machine Structures Lecture 16 - Disks October 20, 2000 David Patterson
First magnetic disks, the IBM 305 RAMAC (2 units shown) introduced in One platter shown top right. A RAMAC stored 5 million characters on inch.
CS61C L40 I/O: Disks (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Computer ArchitectureFall 2008 © November 12, 2007 Nael Abu-Ghazaleh Lecture 24 Disk IO.
Disk Technologies. Magnetic Disks Purpose: – Long-term, nonvolatile, inexpensive storage for files – Large, inexpensive, slow level in the memory hierarchy.
Cs 61C L15 Disks.1 Patterson Spring 99 ©UCB CS61C Anatomy of I/O Devices: Magnetic Disks Lecture 15 March 10, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)
S.1 Review: Major Components of a Computer Processor Control Datapath Memory Devices Input Output Cache Main Memory Secondary Memory (Disk)
DAP Fall.‘00 ©UCB 1 Storage Devices and RAID Professor David A. Patterson Computer Science 252 Fall 2000.
CS 61C L41 I/O Disks (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
RAID Systems CS Introduction to Operating Systems.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 39: IO Disks Instructor: Dan Garcia 1.
Lecture 11: Storage Systems Disk, RAID, Dependability Kai Bu
Redundant Array of Inexpensive Disks (RAID). Redundant Arrays of Disks Files are "striped" across multiple spindles Redundancy yields high data availability.
Lecture 11: Storage Systems Disk, RAID, Dependability Kai Bu
Chapter 6 RAID. Chapter 6 — Storage and Other I/O Topics — 2 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f.
Eng. Mohammed Timraz Electronics & Communication Engineer University of Palestine Faculty of Engineering and Urban planning Software Engineering Department.
Lecture 4 1 Reliability vs Availability Reliability: Is anything broken? Availability: Is the system still available to the user?
CS 352 : Computer Organization and Design University of Wisconsin-Eau Claire Dan Ernst Storage Systems.
Redundant Array of Independent Disks
Two or more disks Capacity is the same as the total capacity of the drives in the array No fault tolerance-risk of data loss is proportional to the number.
L/O/G/O External Memory Chapter 3 (C) CS.216 Computer Architecture and Organization.
1 IKI20210 Pengantar Organisasi Komputer Kuliah No. 21: Peripheral 29 Nopember 2002 Bobby Nazief Johny Moningka
N-Tier Client/Server Architectures Chapter 4 Server - RAID Copyright 2002, Dr. Ken Hoganson All rights reserved. OS Kernel Concept RAID – Redundant Array.
I/O – Chapter 8 Introduction Disk Storage and Dependability – 8.2 Buses and other connectors – 8.4 I/O performance measures – 8.6.
1 Chapter 7: Storage Systems Introduction Magnetic disks Buses RAID: Redundant Arrays of Inexpensive Disks.
Lecture 9 of Advanced Databases Storage and File Structure (Part II) Instructor: Mr.Ahmed Al Astal.
Redundant Array of Inexpensive Disks aka Redundant Array of Independent Disks (RAID) Modified from CCT slides.
CSI-09 COMMUNICATION TECHNOLOGY FAULT TOLERANCE AUTHOR: V.V. SUBRAHMANYAM.
Storage. 10/20/20152 Case for Storage Shift in focus from computation to communication and storage of information –E.g., Cray Research/Thinking Machines.
Redundant Array of Independent Disks.  Many systems today need to store many terabytes of data.  Don’t want to use single, large disk  too expensive.
CS 136, Advanced Architecture Storage. CS136 2 Case for Storage Shift in focus from computation to communication and storage of information –E.g., Cray.
"1"1 Introduction to Managing Data " Describe problems associated with managing large numbers of disks " List requirements for easily managing large amounts.
Disk Storage SystemsCSCE430/830 Disk Storage Systems CSCE430/830 Computer Architecture Lecturer: Prof. Hong Jiang Courtesy of Yifeng Zhu (U. Maine) Fall,
Αρχιτεκτονική Υπολογιστών Ενότητα # 6: RAID Διδάσκων: Γεώργιος Κ. Πολύζος Τμήμα: Πληροφορικής.
Chapter 8 Secondary Memory. Topics Types of External Memory Magnetic Disk Optical Magnetic Tape.
1 Lecture 27: Disks Today’s topics:  Disk basics  RAID  Research topics.
1 CEG 2400 Fall 2012 Network Servers. 2 Network Servers Critical Network servers – Contain redundant components Power supplies Fans Memory CPU Hard Drives.
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
RAID TECHNOLOGY RASHMI ACHARYA CSE(A) RG NO
Lecture 11: Storage Systems Disk, RAID, Dependability Kai Bu
CMSC 611: Advanced Computer Architecture I/O & Storage Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted.
Advanced Computer Architecture CS 704 Advanced Computer Architecture Lecture 40 Input Output Systems (RAID and I/O System Design) Prof. Dr. M. Ashraf Chughtai.
CS Introduction to Operating Systems
Multiple Platters.
Module: Storage Systems
Vladimir Stojanovic & Nicholas Weaver
CS 554: Advanced Database System Notes 02: Hardware
RAID RAID Mukesh N Tekwani
Appendix D– Storage Systems
RAID RAID Mukesh N Tekwani April 23, 2019
Presentation transcript:

RAID Storage EEL4768, Fall 2009 Dr. Jun Wang Slides Prepared based on D&P Computer Architecture textbook, etc.

9/4/20152 Case for Storage Shift in focus from computation to communication and storage of information –E.g., Cray Research/Thinking Machines vs. Google/Yahoo –“The Computing Revolution” (1960s to 1980s)  “The Information Age” (1990 to today) Storage emphasizes reliability and scalability as well as cost-performance What is “Software king” that determines which HW actually features used? –Operating System for storage –Compiler for processor Also has own performance theory—queuing theory—balances throughput vs. response time

9/4/20153 Outline Magnetic Disks RAID

4 What’s Inside A Disk Drive?

5 Disk drive – electronics

6 Components of a disk drive

7 Disk Components Recording Positioning

8 Top view of a single disk platter

9 Surface organized into tracks

10 Tracks broken up into sectors

11

12

13

14

15

16

17

18

19

20 Response time for disks Access time: (service time for a disk access) –Command + Seek + Rotation + Transfer Response time: –Queue time + Access time

9/4/ Disk Figure of Merit: Areal Density Bits recorded along a track –Metric is Bits Per Inch (BPI) Number of tracks per surface –Metric is Tracks Per Inch (TPI) Disk Designs Brag about bit density per unit area –Metric is Bits Per Square Inch: Areal Density = BPI x TPI

9/4/ Historical Perspective 1956 IBM Ramac — early 1970s Winchester –Developed for mainframe computers, proprietary interfaces –Steady shrink in form factor: 27 in. to 14 in. Form factor and capacity drives market more than performance 1970s developments –5.25 inch floppy disk formfactor (microcode into mainframe) –Emergence of industry standard disk interfaces Early 1980s: PCs and first generation workstations Mid 1980s: Client/server computing –Centralized storage on file server »accelerates disk downsizing: 8 inch to 5.25 –Mass market disk drives become a reality »industry standards: SCSI, IPI, IDE »5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces 1900s: Laptops => 2.5 inch drives 2000s: What new devices leading to new drives?

9/4/ Future Disk Size and Performance Continued advance in capacity (60%/yr) and bandwidth (40%/yr) Slow improvement in seek, rotation (8%/yr) Time to read whole disk YearSequentiallyRandomly (1 sector/seek) minutes6 hours minutes 1 week(!) minutes 3 weeks (SCSI) minutes 7 weeks (SATA)

9/4/ Use Arrays of Small Disks? 14” 10”5.25”3.5” Disk Array: 1 disk design Conventional: 4 disk designs Low End High End Katz and Patterson asked in 1987: Can smaller disks be used to close gap in performance between disks and CPUs?

9/4/ Advantages of Small Formfactor Disk Drives Low cost/MB High MB/volume High MB/watt Low cost/Actuator Cost and Environmental Efficiencies

9/4/ Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks) Capacity Volume Power Data Rate I/O Rate MTTF Cost IBM 3390K 20 GBytes 97 cu. ft. 3 KW 15 MB/s 600 I/Os/s 250 KHrs $250K IBM 3.5" MBytes 0.1 cu. ft. 11 W 1.5 MB/s 55 I/Os/s 50 KHrs $2K x70 23 GBytes 11 cu. ft. 1 KW 120 MB/s 3900 IOs/s ??? Hrs $150K Disk Arrays have potential for large data and I/O rates, high MB per cu. ft., high MB per KW, but what about reliability? 9X 3X 8X 6X

9/4/ Array Reliability Reliability of N disks = Reliability of 1 Disk ÷ N 50,000 Hours ÷ 70 disks = 700 hours Disk system MTTF: Drops from 6 years to 1 month! Arrays (without redundancy) too unreliable to be useful! Hot spares support reconstruction in parallel with access: very high media availability can be achieved Hot spares support reconstruction in parallel with access: very high media availability can be achieved

9/4/ Redundant Arrays of (Inexpensive) Disks Files are "striped" across multiple disks Redundancy yields high data availability –Availability: service still provided to user, even if some components failed Disks will still fail Contents reconstructed from data redundantly stored in the array  Capacity penalty to store redundant info  Bandwidth penalty to update redundant info

9/4/ Redundant Arrays of Inexpensive Disks RAID 1: Disk Mirroring/Shadowing Each disk is fully duplicated onto its “mirror” Very high availability can be achieved Bandwidth sacrifice on write: Logical write = two physical writes Reads may be optimized Most expensive solution: 100% capacity overhead ( RAID 2 not interesting, so skip) recovery group

9/4/ Redundant Array of Inexpensive Disks RAID 3: Parity Disk P logical record P contains sum of other disks per stripe mod 2 (“parity”) If disk fails, subtract P from sum of other disks to find missing information Striped physical records

9/4/ RAID 3 Sum computed across recovery group to protect against hard disk failures, stored in P disk Logically, a single high capacity, high transfer rate disk: good for large transfers Wider arrays reduce capacity costs, but decreases availability 33% capacity cost for parity if 3 data disks and 1 parity disk

9/4/ Inspiration for RAID 4 RAID 3 relies on parity disk to discover errors on Read But every sector has an error detection field To catch errors on read, rely on error detection field vs. the parity disk Allows independent reads to different disks simultaneously

9/4/ Redundant Arrays of Inexpensive Disks RAID 4: High I/O Rate Parity D0D1D2 D3 P D4D5D6 PD7 D8D9 PD10 D11 D12 PD13 D14 D15 P D16D17 D18 D19 D20D21D22 D23 P Disk Columns Increasing Logical Disk Address Stripe Insides of 5 disks Example: small read D0 & D5, large write D12-D15 Example: small read D0 & D5, large write D12-D15

9/4/ Inspiration for RAID 5 RAID 4 works well for small reads Small writes (write to one disk): –Option 1: read other data disks, create new sum and write to Parity Disk –Option 2: since P has old sum, compare old data to new data, add the difference to P Small writes are limited by Parity Disk: Write to D0, D5 both also write to P disk D0 D1D2 D3 P D4 D5 D6 P D7

9/4/ Redundant Arrays of Inexpensive Disks RAID 5: High I/O Rate Interleaved Parity Independent writes possible because of interleaved parity Independent writes possible because of interleaved parity D0D1D2 D3 P D4D5D6 P D7 D8D9P D10 D11 D12PD13 D14 D15 PD16D17 D18 D19 D20D21D22 D23 P Disk Columns Increasing Logical Disk Addresses Example: write to D0, D5 uses disks 0, 1, 3, 4

9/4/ Problems of Disk Arrays: Small Writes D0D1D2 D3 P D0' + + D1D2 D3 P' new data old data old parity XOR (1. Read) (2. Read) (3. Write) (4. Write) RAID-5: Small Write Algorithm 1 Logical Write = 2 Physical Reads + 2 Physical Writes

9/4/ RAID 6: Recovering from 2 failures Why > 1 failure recovery? –operator accidentally replaces the wrong disk during a failure –since disk bandwidth is growing more slowly than disk capacity, the MTT Repair a disk in a RAID system is increasing  increases the chances of a 2nd failure during repair since takes longer –reading much more data during reconstruction meant increasing the chance of an uncorrectable media failure, which would result in data loss

9/4/ RAID 6: Recovering from 2 failures Network Appliance’s row-diagonal parity or RAID-DP Like the standard RAID schemes, it uses redundant space based on parity calculation per stripe Since it is protecting against a double failure, it adds two check blocks per stripe of data. –If p+1 disks total, p-1 disks have data; assume p=5 Row parity disk is just like in RAID 4 –Even parity across the other 4 data blocks in its stripe Each block of the diagonal parity disk contains the even parity of the blocks in the same diagonal

39 RAID 10 RAID Level 10 provides very high performance and redundancy. Data is simultaneously mirrored and striped. Can under circumstances support multiple drive failures. Advantages –Highly fault tolerant –High data availability –Very good read / write performance Disadvantages –Very expensive –Drive spindles must be synchronized –Not very scalable Applications –Where high performance and redundancy are critical

40 Two Types of RAID Implementations Hardware RAID –The hardware-based system manages the RAID subsystem independently from the host and presents to the host only a single disk per RAID array Software RAID –Software RAID implements the various RAID levels in the kernel disk (block device) code. It offers the cheapest possible solution, as expensive disk controller cards are not required.

9/4/ How Good is the Protection

42 Orthogonal RAID Array Controller String Controller String Controller String Controller String Controller String Controller String Controller... Option 1Option 2 Error Correction Group Option

43 EMC Symmetrix disks in total 73 GB/drive 28TB in total channel director connects server host to buses disk cache mem 90%-95% hit rate LRU with prefetch each disk director has two Ultral SCSI strings Rather than XOR engine only in the disk directors, RAID5 parity calculations are done in drives side. WHY?

9/4/ Summary: RAID Techniques: Goal was performance, popularity due to reliability of storage Disk Mirroring, Shadowing (RAID 1) Each disk is fully duplicated onto its "shadow" Logical write = two physical writes 100% capacity overhead Parity Data Bandwidth Array (RAID 3) Parity computed horizontally Logically a single high data bw disk High I/O Rate Parity Array (RAID 5) Interleaved parity blocks Independent reads and writes Logical write = 2 reads + 2 writes