CS104 : Discrete Structures

Slides:



Advertisements
Similar presentations
Chapter 1: The Foundations: Logic and Proofs
Advertisements

Grading Lecture attendance: -1% per 2 unexcused absences
Chapter 1: The Foundations: Logic and Proofs 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers.
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 1: (Part 2): The Foundations: Logic and Proofs.
Logic Chapter 2. Proposition "Proposition" can be defined as a declarative statement having a specific truth-value, true or false. Examples: 2 is a odd.
Discrete Mathematics Math 6A Instructor: M. Welling.
CSE115/ENGR160 Discrete Mathematics 01/17/12 Ming-Hsuan Yang UC Merced 1.
First Order Logic. Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not.
CSE115/ENGR160 Discrete Mathematics 01/20/11 Ming-Hsuan Yang UC Merced 1.
Lecture # 21 Predicates & Quantifiers
Adapted from Discrete Math
The Foundations: Logic and Proofs
Chapter 1: The Foundations: Logic and Proofs
Discrete Mathematics Goals of a Discrete Mathematics Learn how to think mathematically 1. Mathematical Reasoning Foundation for discussions of methods.
The Foundations: Logic and Proofs
Discrete Mathematics and Its Applications
Mathematical Structures A collection of objects with operations defined on them and the accompanying properties form a mathematical structure or system.
1 Logic Logic is a discipline that studies the principles and methods used in correct reasoning It includes: A formal language for expressing statements.
CS 285- Discrete Mathematics Lecture 2. Section 1.1 Propositional Logic Propositions Conditional Statements Truth Tables of Compound Propositions Translating.
Chapter 1: The Foundations: Logic and Proofs
Discrete Mathematics and Its Applications Sixth Edition By Kenneth Rosen Chapter 1 The Foundations: Logic and Proofs 歐亞書局.
CSci 2011 Textbook ^Discrete Mathematics and Its Applications,  Rosen  6th Edition  McGraw Hill  2006.
Discrete Mathematics. Propositional Logic 10/8/2015 What’s a proposition? PropositionsNot Propositions = 32Bring me coffee! CS173 is Bryan’s favorite.
CS 103 Discrete Structures Lecture 05
Review I Rosen , 3.1 Know your definitions!
Chapter 1, Part II: Predicate Logic With Question/Answer Animations.
Chapter 1, Part II With Question/Answer Animations Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the.
Chapter 1, Part II: Predicate Logic With Question/Answer Animations.
Lecture 1.2: Equivalences, and Predicate Logic* CS 250, Discrete Structures, Fall 2011 Nitesh Saxena *Adopted from previous lectures by Cinda Heeren, Zeph.
Discrete Structures – CS Text Discrete Mathematics and Its Applications Kenneth H. Rosen (7 th Edition) Chapter 1 The Foundations: Logic and Proofs.
1 CMSC 250 Discrete Structures CMSC 250 Lecture 1.
Reading: Chapter 4 (44-59) from the text book
Hazırlayan DISCRETE COMPUTATIONAL STRUCTURES Propositional Logic PROF. DR. YUSUF OYSAL.
CS100 : Discrete Structures
Predicates and Quantified Statements
Propositional Logic ITCS 2175 (Rosen Section 1.1, 1.2)
Chapter 2 Logic 2.1 Statements 2.2 The Negation of a Statement 2.3 The Disjunction and Conjunction of Statements 2.4 The Implication 2.5 More on Implications.
1 Introduction to Abstract Mathematics Predicate Logic Instructor: Hayk Melikya Purpose of Section: To introduce predicate logic (or.
Chapter 1: The Foundations: Logic and Proofs
The Foundations: Logic and Proof, Sets, and Foundations PROPOSITIONS A proposition is a declarative sentence that is either True or False, but not the.
Fall 2008/2009 I. Arwa Linjawi & I. Asma’a Ashenkity 1 The Foundations: Logic and Proofs Predicates and Quantifiers.
CS 285- Discrete Mathematics Lecture 4. Section 1.3 Predicate logic Predicate logic is an extension of propositional logic that permits concisely reasoning.
Discrete Structures Predicate Logic 1 Dr. Muhammad Humayoun Assistant Professor COMSATS Institute of Computer Science, Lahore.
CSNB143 – Discrete Structure Topic 4 – Logic. Learning Outcomes Students should be able to define statement. Students should be able to identify connectives.
CSci 2011 Recap ^Propositional operation summary not andorconditionalBi-conditional pq ppqqpqpqpqpqpqpqpqpq TTFFTTTT TFFTFTFF FTTFFTTF FFTTFFTT.
Lecture 1.2: Equivalences, and Predicate Logic CS 250, Discrete Structures, Fall 2015 Nitesh Saxena Adopted from previous lectures by Cinda Heeren, Zeph.
Discrete Mathematics Mathematical reasoning: think logically; know how to prove Combinatorial analysis: know how to count Discrete structures: represent.
LECTURE 1. Disrete mathematics and its application by rosen 7 th edition THE FOUNDATIONS: LOGIC AND PROOFS 1.1 PROPOSITIONAL LOGIC.
رياضيات متقطعة لعلوم الحاسب MATH 226. Text books: (Discrete Mathematics and its applications) Kenneth H. Rosen, seventh Edition, 2012, McGraw- Hill.
PREDICATES AND QUANTIFIERS COSC-1321 Discrete Structures 1.
Mathematics for Comter I Lecture 3: Logic (2) Propositional Equivalences Predicates and Quantifiers.
1 Introduction to Abstract Mathematics Chapter 3: The Logic of Quantified Statements. Predicate Calculus Instructor: Hayk Melikya 3.1.
1 Georgia Tech, IIC, GVU, 2006 MAGIC Lab Rossignac Lecture 01: Boolean Logic Sections 1.1 and 1.2 Jarek Rossignac.
Discrete Mathematical Structures: Theory and Applications 1 Logic: Learning Objectives  Learn about statements (propositions)  Learn how to use logical.
1 Section 7.1 First-Order Predicate Calculus Predicate calculus studies the internal structure of sentences where subjects are applied to predicates existentially.
CS104 The Foundations: Logic and Proof 1. 2 What is Discrete Structure?  Discrete Objects  Separated from each other (Opposite of continuous)  e.g.,
Introduction to Discrete Mathematics Discrete Mathematics: is the part of mathematics devoted to the study of discrete objects. Discrete Mathematics is.
Chapter 1 Logic and proofs
CSE15 Discrete Mathematics 01/23/17
Niu Kun Discrete Mathematics Chapter 1 The Foundations: Logic and Proof, Sets, and Functions Niu Kun 离散数学.
6/20/2018 Arab Open University Faculty of Computer Studies M131 - Discrete Mathematics 6/20/2018.
Chapter 1 The Foundations: Logic and Proofs
CS100: Discrete structures
Information Technology Department
CHAPTER 1: LOGICS AND PROOF
Discrete Mathematics CMP-200 Propositional Equivalences, Predicates & Quantifiers, Negating Quantified Statements Abdul Hameed
Cs Discrete Mathematics
Logic Logic is a discipline that studies the principles and methods used to construct valid arguments. An argument is a related sequence of statements.
Discrete Structures Prepositional Logic 2
The Foundations: Logic and Proofs
Presentation transcript:

CS104 : Discrete Structures 4/21/2017 CS104 : Discrete Structures Chapter I Introduction & Logic Theory Prepared by Dr. Zakir H. Ahmed

Introduction to Discrete Structures 4/21/2017 Introduction to Discrete Structures Prepared by Dr. Zakir H. Ahmed

What is Discrete Structure? Discrete Objects Separated from each other (Opposite of continuous) e.g., integers, people, house, Vs. Continuous objects: e.g., real number Discrete Structures The abstract mathematical structures used to represent discrete objects and relationships between the objects e.g. sets, relations, graphs

Why do we study Discrete Structures? Information is stored and manipulated by computers in a discrete fashion. 0101101… As a student in computer science major, you need to know the basic language and conceptual foundation for all of the computer science, i.e., Discrete Structures! Discrete structure concepts are also widely used throughout math, science, engineering, economics, biology, etc., … Get training for rational thought!

Uses of Discrete Structures in Computer Science Networking Database Image Processing Programming Languages Compilers & Interpreters Software Engineering Artificial Intelligence Computer Architecture Operating Systems Security & Cryptography Advanced Algorithms & Data Structures Graphics & Animation ……

Tentative Syllabus & Text Book 4/21/2017 Tentative Syllabus & Text Book Logic Theory Fundamental Structures Proof Techniques Basics of Counting Graph Theory Discrete Probability Text Books Discrete Mathematics and Its Applications, 7th edition by Kenneth H. Rosen, McGraw Hill, 2007. Prepared by Dr. Zakir H. Ahmed

4/21/2017 Logic Theory Prepared by Dr. Zakir H. Ahmed

4/21/2017 Propositional Logic Proposition: A proposition is a declarative statement ( a statement that declares a fact) that is either TRUE or FALSE, but not both. The area of logic that deals with propositions is called propositional logic. Propositions Not Propositions 1. Riyadh is the capital of Saudi Arabia 1. How many students in this class? 2. Every cow has 4 legs. 2. Bring me coffee! 3. 3 + 2 = 32 4. 4 + 3 = 7 3. X + 2 = 3 4. Y + Z = X Prepared by Dr. Zakir H. Ahmed

Propositional Logic - Applications 4/21/2017 Propositional Logic - Applications We are using propositional logic as a foundation for formal proofs. Propositional logic is also the key to writing good code…you can’t do any kind of conditional (if) statement without understanding the condition you’re testing. All the logical connectives we will discuss are also found in hardware and are called “gates.” Prepared by Dr. Zakir H. Ahmed

Propositional Logic - Negation 4/21/2017 Propositional Logic - Negation We use letters to denote propositional variables Truth value of true proposition is denoted by T Truth value of false proposition is denoted by F Negation: Suppose p is a proposition. The negation of p is written p and has meaning: “It is not the case that p.” The proposition p is read “NOT p” Example: p: “Today is Friday” p: “Today is NOT Friday” Truth table for negation: p p F T Notice that p is a proposition! Prepared by Dr. Zakir H. Ahmed

Propositional Logic - Conjunction 4/21/2017 Propositional Logic - Conjunction Conjunction corresponds to English “and.” Conjunction: Let p and q be two propositions. The conjunction of p and q, denoted by p  q, is the proposition “p and q”. The p  q is true when both p and q are true, otherwise false. Example: p: “Today is Friday” q: “It is raining today” p  q: “Today is Friday and it is raining today” Truth table for conjunction: p q p  q F T Prepared by Dr. Zakir H. Ahmed

Propositional Logic - Disjunction 4/21/2017 Propositional Logic - Disjunction Disjunction corresponds to English “or.” Disjunction: Let p and q be two propositions. The disjunction of p and q, denoted by p  q, is the proposition “p or q”. The p  q is false when both p and q are false, otherwise true. Example: p: “Today is Friday” q: “It is raining today” p  q: “Today is Friday or it is raining today” Truth table for disjunction: p q p  q F T Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Exclusive Or 4/21/2017 Propositional Logic – Exclusive Or Exclusive Or: Let p and q be two propositions. The exclusive or of p and q, denoted by p ⊕ q, is the proposition that is true when exactly one of p and q is true, otherwise false. Truth table for Exclusive Or: p q p ⊕ q F T Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Conditional Statement 4/21/2017 Propositional Logic – Conditional Statement It corresponds to English “if p then q” or “p implies q.” Conditional: Let p and q be two propositions. The conditional statement (implication) p  q is the proposition “if p, then q”. The conditional statement p  q is false when p is true and q is false, otherwise true. Example: If it is raining, then it is cloudy. If I am elected, then I will lower taxes. If you get 100% in the final, then you will get Grade A+. Truth table for implication: p q p  q F T Prepared by Dr. Zakir H. Ahmed

Propositional Logic - Special Definitions 4/21/2017 Propositional Logic - Special Definitions Converse: q  p is converse of p  q. Ex.: p  q: “If it is noon, then I am hungry.” q  p: “If I am hungry, then it is noon.” Contrapositive: q  p is contapositive of p  q. Ex.: p  q: “If it is noon, then I am hungry.” q  p: “If I am not hungry, then it is not noon.” Inverse: p  q is inverse of p  q. Ex.: p  q: “If it is noon, then I am hungry.” p  q: “If it is not noon, then I am not hungry.” p  q has same truth values as q  p Prepared by Dr. Zakir H. Ahmed

Propositional Logic - Questions 4/21/2017 Propositional Logic - Questions Q1: Give some examples of p  q, then tell what is q  p q  p p  q Q2: State the converse, contrapositive, and inverse of each of them If it rains today, then I will stay at home I come to class whenever there is going to be a examination A positive integer is prime only if it has no divisors other than 1 and itself. Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Biconditional Statement 4/21/2017 Propositional Logic – Biconditional Statement It corresponds to English “p if and only if q”. Biconditional: Let p and q be two propositions. The biconditional statement (bi-implication) p ↔ q is the proposition “p if and only if q”. The biconditional statement p ↔ q is true when p and q have the same truth values, otherwise false. p ↔ q has same truth value as (p q)  (q  p). Example: p: “You can take the flight” q : “You buy a ticket” p ↔ q : “You can take the flight if and only if you buy a ticket” p q p ↔ q F T Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Precedence 4/21/2017 Propositional Logic – Precedence Precedence of Logical Operators: A compound proposition that is: (1) always true is called a tautology (2) always false is called a contradiction (3) neither a tautology nor a contradiction is called contingency or satisfiable. Operator Precedence ¬ Λ ν → ↔ 1 2 3 4 5 p p p  p p  p F T Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Compound Propositions 4/21/2017 Propositional Logic – Compound Propositions Construct truth table for (p  q) → (p  q). Q3: Construct truth table for (p  q) ↔ (p  q). (p ⊕ q) → (p ⊕ q). (p  q) → (p  q) p  q p  q q q p F T Prepared by Dr. Zakir H. Ahmed

Propositional Equivalences – Logical Equivalences 4/21/2017 Propositional Equivalences – Logical Equivalences Equivalence: The compound propositions p and q are logically equivalent if p↔q is a tautology. In other words, p and q are logically equivalent if their truth tables are the same. We write p  q. Example: (p  q)  p  q. Truth tables for (p  q) and p  q : p  q q p (p  q) p  q q p T F Prepared by Dr. Zakir H. Ahmed

Propositional Equivalences – Logical Equivalences 4/21/2017 Propositional Equivalences – Logical Equivalences Example: p  q  p  q. Truth tables for p  q and p  q: Q4: Show that p  (q  r)  (p  q)  (p  r) p  q p p  q q p T F Prepared by Dr. Zakir H. Ahmed

Propositional Equivalence – Prove the following Logical Equivalences 4/21/2017 Propositional Equivalence – Prove the following Logical Equivalences Equivalence Name p Λ T  p and p ν F  p Identity laws p ν T  T and p Λ F  F Domination laws p ν p  p and p Λ p  p Idempotent laws ¬( ¬ p)  p Double negation law p ν q  q ν p and p Λ q  q Λ p Commutative laws (p ν q) ν r  p ν (q ν r) and (p Λ q) Λ r  p Λ (q Λ r) Associative laws p  (q  r)  (p  q)  (p  r) p  (q  r)  (p  q)  (p  r) Distributive laws ¬(p ν q)  ¬p Λ ¬q and ¬(p Λ q)  ¬p ν ¬q De Morgan’s laws p  (p  q)  p and p  (p  q)  p Absorption laws p ν ¬p  T and p Λ ¬p  F Negation laws Prepared by Dr. Zakir H. Ahmed

Propositional Equivalence – Prove the following Logical Equivalences 4/21/2017 Propositional Equivalence – Prove the following Logical Equivalences Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Translating English Sentences 4/21/2017 Propositional Logic – Translating English Sentences The sentence “The automated reply cannot be sent when the file system is full” can be translated as q → p where p: “The automated reply can be sent ” q: “The file system is full” The sentence “You cannot drive a car if you are under 4 feet tall unless you are older than 16 years old” can be translated as (q r) → p where p: “You can drive a car ” q: “You are under 4 feet tall ” r: “You are older than 16 years old” Prepared by Dr. Zakir H. Ahmed

Propositional Logic – Translating English Sentences 4/21/2017 Propositional Logic – Translating English Sentences The sentence “You can access the Internet from campus only if you are a computer science major or you are not a freshman” can be translated as p → (q  r) where p: “You can access the Internet from campus” q: “You are a computer science major” r: “You are a freshman” Q5: Translate the following sentences into logical expressions: “Access is granted whenever the user has paid the subscription fee and enters a valid password” “If the user has not entered a valid password but has paid the subscription fee, then access is granted” Prepared by Dr. Zakir H. Ahmed

Propositional Equivalences – Logic and Bit Operations 4/21/2017 Propositional Equivalences – Logic and Bit Operations Bit: A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one). A bit can be used to represent a truth value as 1 for T and 0 for F Bit string: A bit string is a sequence of bits. The length of the string is number of bits in the string. Example: 10101001 is a bit string of length eight We define the bitwise OR, AND, and XOR of two strings of same length to be the strings that have as their bits the OR, AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols , , and ⊕ to represent bitwise OR, AND, and XOR, respectively. Prepared by Dr. Zakir H. Ahmed

Propositional Equivalences – Logic and Bit Operations 4/21/2017 Propositional Equivalences – Logic and Bit Operations Truth table for bitwise OR, AND, and XOR: Q6: Find bitwise OR, AND, and XOR of the bit strings 01 0011 0100 and 10 1001 0101 00 1011 1010 and 11 1010 0101 11 0101 0110 and 10 1101 0010 x ⊕ y x  y x  y y x 1 Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers - Predicates 4/21/2017 Predicates and Quantifiers - Predicates The statements “x > 3”, “x = y + 3”, and “computer x is functioning properly” are not propositions This section discusses how proposition can be produced from such statements The statement “x > 3” has two parts – the variables x, the subject of the statement is greater than 3, the predicate, the property that the subject of the statement can have We denote P(x) = “x > 3”, where P denotes the predicate “is greater than 3” and x is the variable Once we assign a value to x, it becomes proposition Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers - Predicates 4/21/2017 Predicates and Quantifiers - Predicates Def: A predicate, or propositional function, is a function that takes some variable(s) as arguments and returns True or False. Example: Let P(x) = “x > 3”, what are the truth values of P(2) and P(4)? Sol: P(2) = “2 > 3” is false and P(4) = “4 > 3” is true Example: Let Q(x, y) = “x = y + 3”, what are the truth values of Q(1, 2) and Q(3, 0)? Sol: Q(1,2)= “1=2+3” is false, Q(3,0)= “3=0+3” is true Def: A statement of the form P(x1, x2, …., xn) is the value of the propositional function P at the n-tuple (x1, x2, …., xn), and P is called n-ary predicate Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers- Predicates 4/21/2017 Predicates and Quantifiers- Predicates Example: Consider the statement if x > 0 then x := x + 1. Here P(x) = “x > 0”. If P(x) is true for the value of x, then the assignment statement x := x + 1 is executed, x is increased by 1. If P(x) is false for the value of x, then the assignment statement is not executed, x remains same The statements that describe valid input are known as preconditions, and the conditions that the output should satisfy when it has run are known as postconditions Q7: Let R(x, y, z) = “x + y = z”, what are the truth values of R(1, 2, 3) and R(0, 0, 1)? Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers - Quantifiers 4/21/2017 Predicates and Quantifiers - Quantifiers Another way of changing a predicate into a proposition is called quantification In English, the words all, some, many, none, and few are used in quantifications Two types of quantifications: Universal quantifications – a predicate is true for every element under consideration Existential quantifications – there is one or more element under consideration for which predicate is true The area of logic that deals with predicates and quantifiers is called predicate calculus Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Universal Quantifiers 4/21/2017 Predicates and Quantifiers – Universal Quantifiers Def: The universal quantification of P(x) is the statement “P(x) for all values of x in the domain”. The notation x P(x) denotes the universal quantification of P(x). Here  is called universal quantifier. An element for which P(x) is false is called a counterexample of x P(x). Quantifiers: When False? When True? Statement There is an x for which P(x) is false P(x) is false for every x P(x) is true for every x There is an x for which P(x) is true x P(x)  x P(x) Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Universal Quantifiers 4/21/2017 Predicates and Quantifiers – Universal Quantifiers Example: Let P(x) = “x+1 > x”. What is the truth value of the quantification x P(x), where the domain consists of all real numbers? Sol: Because P(x) is true for all real numbers x, the quantification x P(x) is true. Example: Let Q(x) = “x < 2”. What is the truth value of the quantification x Q(x), where the domain consists of all real numbers? Sol: Because Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is, x=3 is a counterexample for the statement x Q(x). Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Universal Quantifiers 4/21/2017 Predicates and Quantifiers – Universal Quantifiers Q8: Let P(x) = “x2 > 0”. What is the truth value of the quantification x P(x), where the domain consists of all real numbers? Q9: Let Q(x) = “x2 < 10”. What is the truth value of the quantification x Q(x), where the domain consists of positive integers less than 4? Q10: Let R(x) = “x2 ≥ x”. What is the truth value of the quantification x R(x), where the domain consists of all real numbers? What is the truth value of the quantification if the domain consists of all integers? Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Existential Quantifiers 4/21/2017 Predicates and Quantifiers – Existential Quantifiers Def: The existential quantification of P(x) is the statement “There exists an element x in the domain such that P(x)”. The notation  x P(x) denotes the existential quantification of P(x). Here  is called existential quantifier. Example: Let P(x) = “x > 3”. What is the truth value of the quantification x P(x), where the domain consists of all real numbers? Sol: Because P(x) is sometimes true - for instance, when x=4 – the existential quantification of P(x), which is x P(x), is true. Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Existential Quantifiers 4/21/2017 Predicates and Quantifiers – Existential Quantifiers Example: Let P(x) = “x = x+1”. What is the truth value of the quantification  x P(x), where the domain consists of all real numbers? Sol: Because P(x) is false for every real number x, the quantification  x P(x) is false. Q11: Let Q(x) = “x2 > 10”. What is the truth value of the quantification  x Q(x), where the domain consists of positive integers not exceeding 4? Q12: Let R(x) = “x2 ≥ x”. What is the truth value of the quantification  x R(x), where the domain consists of all real numbers? What is the truth value of the quantification if the domain consists of all integers? Prepared by Dr. Zakir H. Ahmed

4/21/2017 Predicates and Quantifiers – Translating English into Logical Expression Example: Express the statement “Every student in this class has studied calculus” using predicates and quantifiers. Sol: We rewrite as “For every student in this class, the student has studied calculus”. => “For every student x in this class, x has studied calculus”. Let P(x) = “x has studied calculus”, then our statement is represented by xP(x). Q13: Express the statements “Some students in this class visited Dubai” and “Every student in this class has visited either Makkah or Madina” using predicates and quantifiers. Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Quantifiers with Restricted Domain 4/21/2017 Predicates and Quantifiers – Quantifiers with Restricted Domain Example: What do the statements x < 0(x2 > 0), y≠0(y3 ≠ 0), and z > 0(z2 = 2) mean, where the domain in each case consists of all real numbers? Sol: The statement x < 0(x2 > 0) states that for every number x with x < 0, x2 > 0. That is, it states “The square of a negative real number is positive”. The statement is the same as x (x < 0 → x2 > 0). The statement y ≠ 0(y3 ≠ 0) states that for every real number y with y ≠ 0, we have y3 ≠ 0. That is, it states “The cube of every nonzero real is nonzero”. The statement is the same as y (y ≠ 0 → y3 ≠ 0). Finally, the statement z > 0(z2 = 2) states that there exist a real number z with z > 0 such that z2=2. That is, it states “There is positive square root of 2”. The statement is the same as z (z > 0 ⌃z2 = 2). Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Quantifiers with Restricted Domain 4/21/2017 Predicates and Quantifiers – Quantifiers with Restricted Domain Note: The restriction of a universal quantification is the same as the universal quantification of a conditional statement. For instance, x < 0(x2 > 0) is another way of expressing x (x < 0 → x2 > 0). On the other hand, the restriction of an existential quantification is the same as the existential quantification of a conjunction. For instance, z>0(z2=2) can be expressed as z (z > 0 ⌃ z2 = 2). Precedence of Quantifiers: The quantifiers  and  have higher precedence then all logical operators from propositional calculus. For example, xP(x) v Q(x) is the disjunction of xP(x) and Q(x). In other words, it means (xP(x)) v Q(x) rather than x (P(x) v Q(x)) Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Negating Quantified Expression 4/21/2017 Predicates and Quantifiers – Negating Quantified Expression Example: x P(x) means “P(x) is true for every x”. What about x P(x) ? Sol: x P(x) = Not [“P(x) is true for every x.”] => “There is an x for which P(x) is not true.” => x P(x) So, x P(x) is logically equivalent to x P(x). Example: x P(x) means “P(x) is true for some x”. What about x P(x) ? Sol: x P(x) = Not [“P(x) is true for some x.”] => “P(x) is not true for all x.” => x P(x) So, x P(x) is logically equivalent to x P(x). Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Negating Quantified Expression 4/21/2017 Predicates and Quantifiers – Negating Quantified Expression De Morgan’s laws for quantifiers: When False? When is Negation True? Equivalent Statement Negation There is an x for which P(x) is true P(x) is true for every x For every x, P(x) is false There is an x for which P(x) is false x P(x)  x P(x)  x P(x) x P(x) Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Negating Quantified Expression 4/21/2017 Predicates and Quantifiers – Negating Quantified Expression Example: What are the negations of the statements “There is a religious man” and “All Saudi eat Rice”? Sol: Let P(x) = “x is a religious”, => “There is a religious man”= xP(x), where the domain consists of all men Now, xP(x) = xP(x) =“Every man is nonreligious”. Next, let Q(x) = “x eats Rice” => “All Saudi eat Rice” = xQ(x), where the domain consists of all Saudi Now,  xQ(x) = xQ(x) = “Some Saudi does not eat rice”. Q14: What are the negations of the statements x (x2 > x) and x (x2 = 2)”? Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Negating Quantified Expression 4/21/2017 Predicates and Quantifiers – Negating Quantified Expression Example: Let L(x) = “x is a lion”, F(x) = “x is fierce”, and C(x) = “x drinks coffee”. Show the quantifiers for the statements (i) All lions are fierce, (ii) Some lions don’t drink coffee, (iii) Some fierce creatures don’t drink coffee. Sol: (i) x (L(x)  F(x)), ii) x (L(x)  C(x)), and (iii) x (F(x)  C(x)) Q15: Let B(x) = “x is a hummingbird”, L(x) = “x is a large bird”, H(x) = “x lives on honey”, and R(x) = “x is richly colored”. Show the quantifiers for the statements (i) All hummingbirds are richly colored, (ii) No large birds live on honey, (iii) Birds that do not live on honey are dully colored, and (iv) Not all large birds live on honey. Prepared by Dr. Zakir H. Ahmed

Predicates and Quantifiers – Logical Equivalences 4/21/2017 Predicates and Quantifiers – Logical Equivalences Example: Show that x (P(x)  Q(x)) and xP(x)  x Q(x) are logically equivalent. Sol: Let x (P(x)  Q(x)) is true => if a is in the domain, then P(a)  Q(a) is true => P(a) and Q(a) are true, for all a in the domain => xP(x) and xQ(x) are true => xP(x)  xQ(x) is true So, they are logically equivalent. Q16: Show that x(P(x)Q(x)) and x(P(x)  Q(x)) are logically equivalent. Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Definition 4/21/2017 Nested Quantifiers – Definition Def: Two quantifiers are said to be nested if one is within the scope of the other, such as xy (x + y = 0) Note that xy (x + y = 0) is same as xQ(x), where Q(x) is yP(x, y), where P(x, y) is x + y = 0. Example: Assume that the domain for the variables x and y consists of all real numbers. The statement xy (x + y = y + x) says that x + y = y + x for all real numbers x and y. This is commutative law for addition of real numbers. Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Example 4/21/2017 Nested Quantifiers – Example Example: Similarly, the statement xy (x + y = 0) says that for every real number x there is a real number y such that x + y = 0. This states that every real number has an additive inverse. xyz (x + (y + z) = (x + y) + z) is associative law for addition of real numbers. Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Order of Quantifiers 4/21/2017 Nested Quantifiers – Order of Quantifiers Example: Let P(x, y) be the statement “x + y = y + x”. What are the truth values of the quantifications xyP(x, y) and yxP(x, y), where the domain for all variables consists of all real numbers? Sol: xyP(x, y) = “For all real numbers x, for all real numbers y, x + y = y + x”. Since P(x, y) is true for all real numbers x and y, the proposition xyP(x, y) is also true. Also, yxP(x, y) = “For all real numbers y, for all real numbers x, x + y = y + x” = xyP(x, y). Note: Order of nested universal quantifiers in a statement without other quantifiers can be changed without changing meaning of quantified statement. Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Order of Quantifiers 4/21/2017 Nested Quantifiers – Order of Quantifiers Example: Let Q(x, y) be the statement “x + y = 0”. What are the truth values of the quantifications yxQ(x, y) and xyQ(x, y), where the domain for all variables consists of all real numbers? Sol: yxQ(x, y) = “There is a real number y such that for every real number x, x + y = 0”. Since there is no real number y such that x + y = 0, for all real numbers x, the proposition yxQ(x, y) is false. xyQ(x, y) = “For every real number x, there is a real number y such that x + y = 0”. Given a real number x, there is a real number y, namely y = -x, such that x + y =0. So, xyQ(x, y) is true. Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Quantification of Two Variables 4/21/2017 Nested Quantifiers – Quantification of Two Variables When False? When True? Statement There is a pair x, y for which P(x, y) is false P(x, y) is true for every pair x, y. xyP(x, y) yxP(x, y) There is an x such that P(x, y) is false for every y For every x there is a y for which P(x, y) is true xyP(x, y), For every x there is a y for which P(x, y) is false There is an x such that P(x, y) is true for every y xyP(x, y) P(x, y) is false for every pair x, y. There is a pair x, y for which P(x, y) is true xyP(x, y) yxP(x, y) Q17: Let Q(x, y) = “x + y = y”. What are the truth values of the quantifications yxQ(x, y) and xyQ(x, y), where the domain for all variables consists of all real numbers? Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Order of Quantifiers 4/21/2017 Nested Quantifiers – Order of Quantifiers Example: Let Q(x, y, z) be the statement “x + y = z”. What are the truth values of the quantifications xyzQ(x, y, z) and zxyQ(x, y, z), where the domain for all variables consists of all real numbers? Sol: xyzQ(x, y, z) = “For all real numbers x and for all real numbers y there is a real number z such that x + y = z” is true. The order of quantification is important here. Since zxyQ(x, y, z) = “There is a real number z such that for all real numbers x and for all real numbers y, x + y = z”, is false, because there is no z that satisfies the equation x + y = z for all for all real numbers x and y Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Translating Statements 4/21/2017 Nested Quantifiers – Translating Statements Example: Translate the statement “The sum of two positive integers is always positive” into a logical expression. Sol: Let x and y be two positive integers, then we can write the statement as “For all positive integers x and y, x + y is positive”. This can be expressed as xy((x > 0) ⌃ (y > 0) → (x + y > 0)), where the domain for both variables consists of integers. We can also express this as xy(x + y > 0), where the domain for both variables consists of positive integers. Q18: Translate the statement “Every real number except zero has a multiplicative inverse” into a logical expression. Prepared by Dr. Zakir H. Ahmed

Nested Quantifiers – Translating From Nested Quantifiers 4/21/2017 Nested Quantifiers – Translating From Nested Quantifiers Example: Translate the statement x(C(x) v y(C(y) ⌃ F(x, y))) into English, where C(x)=“x has a computer”, F(x, y) = “x and y are friends”, and the domain for both x and y consists of all students in your class. Sol: The statement says that for every student x in your class, x has a computer or there is a student y such that y has computer and x and y are friends. In other words, every student in your class has a computer or has a friend who has a computer. Q19: Translate the statement xyz((F(x, y) ⌃ F(x, z) ⌃ (y ≠ z)) → F(y, z)) into English, where F(a, b) means a and b are friends and the domain for x, y and z consists of all students in your class. Prepared by Dr. Zakir H. Ahmed

4/21/2017 End of Chapter I Prepared by Dr. Zakir H. Ahmed