Yuan Li, Chang Huang and Ram Nevatia

Slides:



Advertisements
Similar presentations
Pseudo-Relevance Feedback For Multimedia Retrieval By Rong Yan, Alexander G. and Rong Jin Mwangi S. Kariuki
Advertisements

Face Alignment by Explicit Shape Regression
Presented by Xinyu Chang
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Learning Techniques for Video Shot Detection Under the guidance of Prof. Sharat Chandran by M. Nithya.
Taxonomic classification for web- based videos Author: Yang Song et al. (Google) Presenters: Phuc Bui & Rahul Dhamecha.
Patch to the Future: Unsupervised Visual Prediction
Multiple People Detection and Tracking with Occlusion Presenter: Feifei Huo Supervisor: Dr. Emile A. Hendriks Dr. A. H. J. Stijn Oomes Information and.
A KLT-Based Approach for Occlusion Handling in Human Tracking Chenyuan Zhang, Jiu Xu, Axel Beaugendre and Satoshi Goto 2012 Picture Coding Symposium.
Robust Moving Object Detection & Categorization using self- improving classifiers Omar Javed, Saad Ali & Mubarak Shah.
HCI Final Project Robust Real Time Face Detection Paul Viola, Michael Jones, Robust Real-Time Face Detetion, International Journal of Computer Vision,
MULTI-TARGET TRACKING THROUGH OPPORTUNISTIC CAMERA CONTROL IN A RESOURCE CONSTRAINED MULTIMODAL SENSOR NETWORK Jayanth Nayak, Luis Gonzalez-Argueta, Bi.
1 Learning to Detect Objects in Images via a Sparse, Part-Based Representation S. Agarwal, A. Awan and D. Roth IEEE Transactions on Pattern Analysis and.
Graz University of Technology, AUSTRIA Institute for Computer Graphics and Vision Fast Visual Object Identification and Categorization Michael Grabner,
Generic Object Detection using Feature Maps Oscar Danielsson Stefan Carlsson
Ensemble Tracking Shai Avidan IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE February 2007.
Region-Level Motion- Based Background Modeling and Subtraction Using MRFs Shih-Shinh Huang Li-Chen Fu Pei-Yung Hsiao 2007 IEEE.
1 Integration of Background Modeling and Object Tracking Yu-Ting Chen, Chu-Song Chen, Yi-Ping Hung IEEE ICME, 2006.
A fuzzy video content representation for video summarization and content-based retrieval Anastasios D. Doulamis, Nikolaos D. Doulamis, Stefanos D. Kollias.
Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques
Foundations of Computer Vision Rapid object / face detection using a Boosted Cascade of Simple features Presented by Christos Stoilas Rapid object / face.
FACE DETECTION AND RECOGNITION By: Paranjith Singh Lohiya Ravi Babu Lavu.
Human tracking and counting using the KINECT range sensor based on Adaboost and Kalman Filter ISVC 2013.
Prakash Chockalingam Clemson University Non-Rigid Multi-Modal Object Tracking Using Gaussian Mixture Models Committee Members Dr Stan Birchfield (chair)
Shape-Based Human Detection and Segmentation via Hierarchical Part- Template Matching Zhe Lin, Member, IEEE Larry S. Davis, Fellow, IEEE IEEE TRANSACTIONS.
Player Action Recognition in Broadcast Tennis Video with Applications to Semantic Analysis of Sport Game Guangyu Zhu, Changsheng Xu Qingming Huang, Wen.
Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene Present by 陳群元.
Learning a Fast Emulator of a Binary Decision Process Center for Machine Perception Czech Technical University, Prague ACCV 2007, Tokyo, Japan Jan Šochman.
Window-based models for generic object detection Mei-Chen Yeh 04/24/2012.
Sign Classification Boosted Cascade of Classifiers using University of Southern California Thang Dinh Eunyoung Kim
Automatic Image Annotation by Using Concept-Sensitive Salient Objects for Image Content Representation Jianping Fan, Yuli Gao, Hangzai Luo, Guangyou Xu.
Combining multiple learners Usman Roshan. Bagging Randomly sample training data Determine classifier C i on sampled data Goto step 1 and repeat m times.
Exploiting Context Analysis for Combining Multiple Entity Resolution Systems -Ramu Bandaru Zhaoqi Chen Dmitri V.kalashnikov Sharad Mehrotra.
Bryan Willimon, Stan Birchfield, Ian Walker Department of Electrical and Computer Engineering Clemson University IROS 2010 Rigid and Non-Rigid Classification.
BEHAVIORAL TARGETING IN ON-LINE ADVERTISING: AN EMPIRICAL STUDY AUTHORS: JOANNA JAWORSKA MARCIN SYDOW IN DEFENSE: XILING SUN & ARINDAM PAUL.
Stable Multi-Target Tracking in Real-Time Surveillance Video
MedIX – Summer 07 Lucia Dettori (room 745)
Learning with AdaBoost
Robust Object Tracking by Hierarchical Association of Detection Responses Present by fakewen.
CVPR2013 Poster Detecting and Naming Actors in Movies using Generative Appearance Models.
Automated Solar Cavity Detection
Boosted Particle Filter: Multitarget Detection and Tracking Fayin Li.
HIGH PERFORMANCE OBJECT DETECTION BY COLLABORATIVE LEARNING OF JOINT RANKING OF GRANULES FEATURES Chang Huang and Ram Nevatia University of Southern California,
Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P.
Face Image-Based Gender Recognition Using Complex-Valued Neural Network Instructor :Dr. Dong-Chul Kim Indrani Gorripati.
Hand Gesture Recognition Using Haar-Like Features and a Stochastic Context-Free Grammar IEEE 高裕凱 陳思安.
FACE DETECTION : AMIT BHAMARE. WHAT IS FACE DETECTION ? Face detection is computer based technology which detect the face in digital image. Trivial task.
Robust Nighttime Vehicle Detection by Tracking and Grouping Headlights Qi Zou, Haibin Ling, Siwei Luo, Yaping Huang, and Mei Tian.
Presented by: Idan Aharoni
NTU & MSRA Ming-Feng Tsai
Object Recognition as Ranking Holistic Figure-Ground Hypotheses Fuxin Li and Joao Carreira and Cristian Sminchisescu 1.
Wonjun Kim and Changick Kim, Member, IEEE
A Brief Introduction on Face Detection Mei-Chen Yeh 04/06/2010 P. Viola and M. J. Jones, Robust Real-Time Face Detection, IJCV 2004.
Face Detection and Head Tracking Ying Wu Electrical Engineering & Computer Science Northwestern University, Evanston, IL
Tracking Groups of People for Video Surveillance Xinzhen(Elaine) Wang Advisor: Dr.Longin Latecki.
Learning to Rank: From Pairwise Approach to Listwise Approach Authors: Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li Presenter: Davidson Date:
Boosting ---one of combining models Xin Li Machine Learning Course.
Max-Confidence Boosting With Uncertainty for Visual tracking WEN GUO, LIANGLIANG CAO, TONY X. HAN, SHUICHENG YAN AND CHANGSHENG XU IEEE TRANSACTIONS ON.
Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene Present by 陳群元.
Adaboost (Adaptive boosting) Jo Yeong-Jun Schapire, Robert E., and Yoram Singer. "Improved boosting algorithms using confidence- rated predictions."
SIFT.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. A scalable platform for learning and evaluating a real-time vehicle detection system.
2. Skin - color filtering.
Interactive Offline Tracking for Color Objects
Traffic Sign Recognition Using Discriminative Local Features Andrzej Ruta, Yongmin Li, Xiaohui Liu School of Information Systems, Computing and Mathematics.
A New Approach to Track Multiple Vehicles With the Combination of Robust Detection and Two Classifiers Weidong Min , Mengdan Fan, Xiaoguang Guo, and Qing.
ADABOOST(Adaptative Boosting)
Progress Report Meng-Ting Zhong 2015/9/10.
SIFT.
Presentation transcript:

Yuan Li, Chang Huang and Ram Nevatia Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene Yuan Li, Chang Huang and Ram Nevatia 利用machine learning的方式來實作軌跡的連接,產生track的效果 cvpr2009 University of Southern California南加州大學 再iris作computer vision research

Yuan Li

Outline introduction Related work MAP formulation Affinity model Results Conclusion 3. 4. MAP formulation for Tracklet Association利用事後最大機率,找出最好的軌跡 Affinity model for association 我們training的方式,建出affinity model,來找出最有可能的連接方式

overview

STAGE 1 STAGE 2 STAGE 3 STAGE 4

Introduction learning-based hierarchical approach of multi-target tracking HybridBoost algorithm-hybrid loss function association of tracklet is formulated as a joint problem of ranking and classification 這篇paper是融合了machine learning的方式,分很多個stage 一直蓮一直連連道變成一個軌跡 Hybridboost 是一種DAT(data association based tracking)

ranking the ranking part aims to rank correct tracklet associations higher than other alternatives

classification the classification part is responsible to reject wrong associations when no further association should be done 防錯 軌跡該斷沒斷

HybridBoost combines the merits of the RankBoost algorithm and the AdaBoost algorithm . Rankboost The basic idea of RankBoost is to formalize learning to rank as a problem of binary classification on instance pairs, and then to adopt boosting approach. Like all boosting algorithms, RankBoost trains one weak ranker at each round of iteration, and combines these weak rankers as the final ranking function. After each round, the document pairs are re-weighted: it decreases the weight of correctly ranked pairs and increases the weight of wrongly ranked pairs.

adaboost Boosting就是每次挑一個比普通好一點的演算法(weak learner) 一次一次的利用update weight 的方式降低整體的error rate Rankboost adaboost其實很像 都是一種二元的分類方式 他們都有一個共同的宗旨 就是在training的時候,對上一輪比錯的sample的weight進行調升, 而比對的sample的weight進行調降 這樣就可以在之後的幾輪裡,更有可能把之前分類的錯誤進行調整,改正 Adaboost在這篇paper裡,就是將對的跟錯的連接方式進行分類 Rankboost則是參照ada動態調整資料的權重,將排名問題轉成二元排序 X1~xm

RankBoost Rankboost則是參照ada動態調整資料的權重,將排名問題轉成二元排序 比較兩個事件 每次對一個weak ranker作training 每次training 家大比錯的那些pair的weight 減少比對的那些pair的weight ----------------------------------------------------------------------- learning to rank as a problem of binary classification on instance pairs trains one weak ranker at each round of iteration //re-weighted: it decreases the weight of correctly ranked pairs and increases the weight of wrongly ranked pairs.??

Related work the earliest works look at a longer period of time in contrast to frame-by-frame tracking. To overcome this, a category of Data Association based Tracking algorithm there has been no use of machine learning algorithm in building the affinity model. 早期的work都是看一段很長的時間來做tracking的動作 但是這樣search space會很大 所以我們就導入了DAT algorithm 但是其中索取的feature threshold & weight通常都是用人工去設定 那我這篇paper的重點,就是運用machine learning的方式,training出affinity model,這樣所做出來的結果,也比人工定義的還準 Search space 大 有些用dp, linear programming, min-cost flow ,hungarian

MAP formulation Robust Object Tracking by Hierarchical Association of Detection Responses ours

MAP formulation v1 R = {ri} the set of all detection responses 第八篇paper Low level 造出最基本的tracklet

MAP formulation v1(cont.) tracklet association Middle level 把low level連成的tracklet們來做association 把它轉成map的問題(maximum a posterior) 又因為假設input tracklet 和 S(tracklet association set)條件獨立 就可以用貝式定理轉右邊 tracklet associations {Sk} are independent of each other.轉下面

MAP formulation v1(cont.) P+ 是true detection真的是人 而且是第K個人 P- 是false alarm 偵測錯誤

MAP formulation v2 定義符號不一樣 Tk是 tracklet association set 為了得到最佳的連法 轉map Tk*=連乘false alarm *********連乘所有對的 P是這條的開頭*這個tracklet是對的tracklet的可能性….到term

MAP formulation v2(cont.) Inner cost Transition cost

MAP formulation v2(cont.) With these ,we can rewrite it

Affinity model Hybridboost algorithm Feature pool and weak learner Training process 4.

Hybridboost algorithm Ie. T2 T1 T3 Ranker H

Hybridboost algorithm(cont.) 因為hybridboost是由ada 跟rank組成的 所以需要train他們兩個的training set Ranking boost的training set Binary boost的training set R是後面的連法比前面有可能 B是這種連法對不對(training時是跟ground truth。比 tracking時是由weak learner來決定)

Loos function initial Hybrid boost 的loss function 就是由Ranking boost , binary boost的linear combination組合而成 Zt 則是經由每個round(對每個feature和threshold)作training不斷的update αt ht 還有wt(xj, yj) 來計算H =strong ranking classifier

Strong ranking classifier weak weak weak weak Update sample weight Update weight Update weight

Hybridboost algorithm Table1 這是對一個stage裡 分成n個iteration(round)=train weak ranker 分別計算可使Z(loos function)最小的αt ht 做完所有的round(100次)後 得出1個stage最後的strong classifier ranker

Weak ranking classifier Feature & threshold

Feature pool and weak learner Table2 在每個round 都對個feature 和不同的threshold 作minimize Z H二分法 W是上個round update來的 ˆα則是可使Z最小的α 最後回傳最好的α: h∗(x) and α∗.

Training process T:tracklet set from the previous stage G:groundtruth track set Φ是一個function 告訴上個stage的軌跡是不是和真實的一樣 有沒有標錯

Training process (cont) For each Ti ∈ T, if connecting Ti’s tail to the head of some other tracklet

Training process (cont) connecting Ti’s head to the tail of some other tracklet before Ti which is also matched to G

Ranking sample set

Binary sample set

Training process (cont.) use the groundtruth G and the tracklet set Tk−1 obtained from stage k − 1 to generate ranking and binary classification samples learn a strong ranking classifier Hk by the HybridBoost algorithm Using Hk as the affinity model to perform association on Tk−1 and generate Tk 這三部作k次 得到最後的結果 tracker!

Experimental results Implementation details Evaluation metrics Analysis of the training process Tracking performance

Implementation details dual-threshold strategy to generate short but reliable tracklets four stages of association maximum allowed frame gap 16, 32, 64 and 128 a strong ranking classifier H with 100 weak ranking classifiers Β=0.75 ζ = 0

Evaluation metrics Recall:跟GT比 抓對的比例 Precision :跟output比 Frag:GT的軌跡裡,斷了幾次,換了幾次 tracking ID 影片的人物軌跡中,被track成別人的次數 IDS:track出來的軌跡裡,人物變了幾次

track fragments &ID switches Traditional ID switch:“two tracks exchanging their ids”. ID switch : a tracked trajectory changing its matched GT ID track fragments:more strict Ids 換了gt的才算

compare IDS:track出來的軌跡裡,人物變了幾次 Frag:GT的軌跡裡,斷了幾次,換了幾次 tracking ID trk1=GT1->GT2 trk2=GT2->GT1 FRA=2 GT1=trk1->trk2 GT2=trk2->trk1 (B) IDS=1 Trk1=GT1->GT2 GT1=trk1->trk3

Best features Motion smoothness (feature type 13 or 14) color histogram similarity (feature 4) number of miss detected frames in the gap between the two trackelts (feature 7 or 9).

Strong ranking classifier output 把training的情況拿出來討論 Appearance similarity 一開始很嚴 ,要顏色很近才能相連(weight很大),但後來越蓮越長,因為光影的變化,所以這項constraint會放寬(weight降低),來連接後面stage的tracklet Motion smooth越來越不重要,因為後來都轉到motion smoothness in ground plane.

Choice of β

Tracking performance

Conclusion and future work Use HybridBoost algorithm to learn the affinity model as a joint problem of ranking and classification The affinity model is integrated in a hierarchical data association framework to track multiple targets in very crowded scenes.

Thank you

problem tracklet ?affinity model?圓圈?路徑? automatically select among various features and corresponding non-parametric models? Rankboost ? Adaboost? 匈牙利演算法