Tapering and prewhitening fFT taper, h(u). Need for prewhitening/prefiltering periodogram is generally biased.

Slides:



Advertisements
Similar presentations
Statistical Time Series Analysis version 2
Advertisements

State Space Models. Let { x t :t T} and { y t :t T} denote two vector valued time series that satisfy the system of equations: y t = A t x t + v t (The.
Time Series Analysis -- An Introduction -- AMS 586 Week 2: 2/4,6/2014.
2006 AGU Fall Meeting. 14 Dec. 2006, San Francisco – Poster #G43A-0985 Jim Ray (NOAA/NGS), Tonie van Dam (U. Luxembourg), Zuheir Altamimi (IGN), Xavier.
Analysis of the time-varying cortical neural connectivity in the newborn EEG: a time-frequency approach Amir Omidvarnia, Mostefa Mesbah, John M. O’Toole,
FilteringComputational Geophysics and Data Analysis 1 Filtering Geophysical Data: Be careful!  Filtering: basic concepts  Seismogram examples, high-low-bandpass.
Fourier series With coefficients:. Complex Fourier series Fourier transform (transforms series from time to frequency domain) Discrete Fourier transform.
OPTIMUM FILTERING.
1 Power Nine Econ 240C. 2 Outline Lab Three Exercises Lab Three Exercises –Fit a linear trend to retail and food sales –Add a quadratic term –Use both.
The Empirical FT continued. What is the large sample distribution of the EFT?
For s.e. of flux multiply cv by mean flux over time period Damage: penetration depends on size.
1 Power Nine Econ 240C. 2 Outline Lab Three Exercises Lab Three Exercises –Fit a linear trend to retail and food sales –Add a quadratic term –Use both.
1 Power Nine Econ 240C. 2 Outline Lab Three Exercises Lab Three Exercises –Fit a linear trend to retail and food sales –Add a quadratic term –Use both.
Los Angeles polution mortality study Shumway at al (1988) Environ. Res. 45, Los Angeles County: average daily cardiovascular mortality particulate.
Analysis of Covariance Goals: 1)Reduce error variance. 2)Remove sources of bias from experiment. 3)Obtain adjusted estimates of population means.
UNR * STAT 758 * Fall White noise Periodogram of white noise.
Digital Signal Processing & Digital Filters
Kalman Filtering Jur van den Berg. Kalman Filtering (Optimal) estimation of the (hidden) state of a linear dynamic process of which we obtain noisy (partial)
Spatial Spectral Estimation for Reactor Modeling and Control Carl Scarrott Granville Tunnicliffe-Wilson Lancaster University, UK
Kalman Smoothing Jur van den Berg.
1 Non-Parametric Power Spectrum Estimation Methods Eric Hui SYDE 770 Course Project November 28, 2002.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
1 BIEN425 – Lecture 8 By the end of the lecture, you should be able to: –Compute cross- /auto-correlation using matrix multiplication –Compute cross- /auto-correlation.
Инвестиционный паспорт Муниципального образования «Целинский район»
Exoplanet Transit Analysis Michael Mancinelli Astronomy :00 PM.
- 1 - YLD 10/2/99ESINSA Tools YLD 10/2/99ESINSA Filters Performances A filter should maintain the signal integrity. A signal does not exist alone.
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
EEG analysis during hypnagogium Petr Svoboda Laboratory of System Reliability Faculty of Transportation Czech Technical University
Big Data at Home Depot KSU – Big Data Survey Course Steve Einbender Advanced Analytics Architect.
Post-processing of Continuous Shear Wave Signals April 28, 2011 Taeseo Ku Civil & Environmental Engineering EAS 4480.
0 - 1 © 2007 Texas Instruments Inc, Content developed in partnership with Tel-Aviv University From MATLAB ® and Simulink ® to Real Time with TI DSPs Spectrum.
Linear Filters. denote a bivariate time series with zero mean. Let.
Distinctive Image Features from Scale-Invariant Keypoints
ECEN4503 Random Signals Lecture #39 15 April 2013 Dr. George Scheets n Read: 10.3, 11.1 n Problems: 11.1, 11.4, 11.15, (1 st Edition) n Problems:
Multivariate Time Series Analysis
WRITING LINEAR EQUATIONS FINDING THE SLOPE OF A LINE.
SYSTEMS Identification Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference: “System Identification Theory.
Geology 6600/7600 Signal Analysis 05 Oct 2015 © A.R. Lowry 2015 Last time: Assignment for Oct 23: GPS time series correlation Given a discrete function.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
Image Enhancement by Spatial Domain Filtering
Cycle Detection and Removal in Electricity Markets “Lunch at Lab” Presentation Matt Lyle Department of mathematics&statistics University of Calgary, Alberta.
Power Spectrum Estimation in Theory and in Practice Adrian Liu, MIT.
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
A NOVEL SIGNAL PROCESSING METHOD BASED ON THE FREQUENCY MODALITY FOR INTRA-BODY MEDICAL INSTRUMENT TRACKING Dr. DIMITRIS A. FOTIADIS TECHNOLOGICAL EDUCATIONAL.
Adv DSP Spring-2015 Lecture#11 Spectrum Estimation Parametric Methods.
Locating a Shift in the Mean of a Time Series Melvin J. Hinich Applied Research Laboratories University of Texas at Austin
Slope - a number that describes the steepness & direction of a line Find the slope of the line y = x - 1 x y
Fourier series With coefficients:.
Signal processing.
Search for solar normal modes in ambient seismic noise
VUMC Soil Worm Activity Monitor
The Empirical FT. What is the large sample distribution of the EFT?
With joint time series data and either a bivariate model, data (X(t),Y(t); t = 0,...,T-1) or a regression/transfer function model the following R functions.
Component: E Local quakes Broad frequency Two tremor bursts
Unit 44 Vibrationdata Sine Filtering.
White Noise Xt Has constant power SX( f ) at all frequencies.
The importance of prefiltering.
ARCH(m) Example. S&P/TSX Capped Composite
Second order stationary p.p.
postscript(file="sales.eps",paper="letter")
Basic Image Processing
The Empirical FT. What is the large sample distribution of the EFT?
Analysis of Dynamic Brain Imaging Data
Lecture 7 Spatial filtering.
Filtering Removing components from an image is know as “image filtering”. If we remove the high frequency components, we tend to remove the noise. This.
Presentation transcript:

Tapering and prewhitening fFT taper, h(u)

Need for prewhitening/prefiltering periodogram is generally biased

Smoothed periodogram Expected value generally biased, but not for white noise

Improve by prefiltering Y filtered version of X with transfer function A dZ Y (λ) = A(λ)dZ X (λ) f YY (λ) = |A (λ)| -2 f XX (λ) f XX (λ) = |A (λ)| -2 f YY (λ) For example: detrend, “remove” peaks, fit autoregressive

The importance of prefiltering. The estimates are generally biased E{ f T ( )} =  W T ( -  ) f(  ) d  Seismic noise horizontal components recorded at UCB Estimated coherence can be 1,0 when no relation Estimated coherence can be 0.0 when linearly time invariantly related

postscript(file="seismic.eps") junkx<-scan("ts_drb.16.dat") junky<-scan("ts_drb.17.dat") par(mfrow=c(2,1)) xaxis<-c(1:2500)*.08 plot(xaxis,junkx,type="l",main="Vertical component seismic noise at Berkeley",xlab="time (sec)",ylab="",las=1) plot(xaxis,junky,type="l",main="West component",xlab="time(sec)",ylab="",las=1) par(mfrow=c(2,3)) junk<- spec.pgram(cbind(junkx,junky),spans=15,taper=0,detrend=F,demean =T,plot=F) junk$freq<-junk$freq/.08 plot(junk$freq,junk$spec[,1],type="l",las=1,main="Vertical noise",xlab="frequency (hertz)",log="y") plot(junk$freq,junk$spec[,2],type="l",las=1,main="West noise",log="y") plot(junk$freq,junk$coh,type="l",ylim=c(0,1),main="Raw data",las=1) abline(h=1-(1-.95)^(1/(.5*(junk$df-2))))

junkxx<-ar(junkx,order.max=2) junkyy<-ar(junky,order.max=2) Junkx<-junkxx$resid Junky<-junkyy$resid Junkx<-Junkx[3:length(Junkx)];Junky<- Junky[3:length(Junky)] Junk<- spec.pgram(cbind(Junkx,Junky),spans=15,taper=0,detrend=F, demean=T,plot=F) Junk$freq<-Junk$freq/.08 plot(Junk$freq,Junk$spec[,1],type="l",las=1,log="y") plot(Junk$freq,Junk$spec[,2],type="l",las=1,log="y") plot(Junk$freq,Junk$coh,type="l",ylim=c(0,1),main="AR(2) residuals",las=1) abline(h=1-(1-.95)^(1/(.5*(junk$df-2)))) graphics.off()