1 CDT403 Research Methods in Natural Sciences and Engineering Theory of Science GOLEM ANALYSIS OF SCIENTIFIC CONFIRMATION: THEORY OF RELATIVITY Gordana.

Slides:



Advertisements
Similar presentations
Mr Green sees the shorter, straight, green path and Mr. Red sees the longer, curved, red path.
Advertisements

Relativity Theories. The Principle of Relativity Although motion often appears relative, it’s logical to identify a “background” reference frame from.
The Crisis of Classical Physics
Chapter 18: Relativity and Black Holes
Theories and Models SNC2D. Theories and Models: Daily Learning Goal The student will be able to differentiate between scientific laws and scientific theories.
Extragalactic Astronomy & Cosmology First-Half Review [4246] Physics 316.
Relativity Pierre-Hugues Beauchemin PHY 006 –Talloire, May 2013.
Developing a Theory of Gravity Does the Sun go around the Earth or Earth around Sun? Why does this happen? Plato } Artistotle } Philosophy Ptolemy }& Models.
Spacetime: just when you thought it was it throws you a.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 5.
General Relativity I The need for a more general theory of relativity… Einstein’s tower experiment The strong equivalence principle.
Chapter 13: Neutron Stars and Black Holes Einstein’s theories of Relativity Albert Einstein (Al) is best known for his two theories of relativity Special.
Gravity as Geometry. Forces in Nature Gravitational Force Electromagnetic Force Strong Force Weak Force.
Maxwell’s Theory Tom Catalano & Sam Roskos. James Clerk Maxwell ( ) Scottish mathematical physicist Vastly influential in many different fields.
General Theory of Relativity Secs Professor Ken Wester.
Scientific Theory and Scientific Law
Scientific Theory and Scientific Law
Objectives Solve orbital motion problems. Relate weightlessness to objects in free fall. Describe gravitational fields. Compare views on gravitation.
© 2010 Pearson Education, Inc. Chapter S3 Spacetime and Gravity.
General Relativity.
The History Of Astronomy
Modern Physics: Part 2. ALL Galaxies have redshifts – farther from us greater redshifts! Many other scientists made observations similar to Slipher’s.
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Lecture 4: General Relativity. Einstein’s Progress in General Relativity Einstein knew Special Relativity could only treat situations where gravity was.
2.1The Apparent Need for Ether 2.2The Michelson-Morley Experiment 2.3Einstein’s Postulates 2.4The Lorentz Transformation 2.5Time Dilation and Length Contraction.
1 Experimental basis for special relativity Experiments related to the ether hypothesis Experiments on the speed of light from moving sources Experiments.
Introduction to special relativity
Special Theory of Relativity
Relativity ds 2 = ( 1 - ) dt 2 – (1 + ) dr 2 – r 2 d  2 – r 2 sin 2  d 2 “ 2GM R R Twinkle, twinkle little star How I wonder where you are “1.75 seconds.
Chapter 13 Black Holes. What do you think? Are black holes just holes in space? What is at the surface of a black hole? What power or force enables black.
NS 1300 Dr. Hoge.  Can we slow light down?  Can we make things invisible?  Is it possible to travel faster than the speed of light?  Is faster than.
Special Relativity.
Gravity, Energy, and Light Einstein and Newton 1.
How Does Gravity Work?!?! General Relativity. Aristotle described the effect of gravity as the natural motion of an object to return to its realm. Kepler.
 Albert Einstein’s Conjecture  Sir Arthur Eddington’s Test  Popper’s Account.
General Relativity (1915) A theory of gravity, much more general than Newton’s theory. Newtonian gravity is a “special case”; applies when gravity is very.
A Short Talk on… Gravitational Lensing Presented by: Anthony L, James J, and Vince V.
General Relativity and the Expanding Universe Allan Johnston 4/4/06.
Gravitational Lensing
Fundamental Principles of General Relativity  general principle: laws of physics must be the same for all observers (accelerated or not)  general covariance:
Lecture 27: Black Holes. Stellar Corpses: white dwarfs white dwarfs  collapsed cores of low-mass stars  supported by electron degeneracy  white dwarf.
Extragalactic Astronomy & Cosmology Lecture GR Jane Turner Joint Center for Astrophysics UMBC & NASA/GSFC 2003 Spring [4246] Physics 316.
Welcome to our Special Relativity Minicourse Brought to you by Quarknet Physics Department of the University of Houston Physics and Astronomy Department.
Principle of Equivalence: Einstein 1907 Box stationary in gravity field Box falling freely Box accelerates in empty space Box moves through space at constant.
Relativity Jennifer Keehn. “I want to know how God created this world. I am not interested in this or that phenomena, in the spectrum of this or that.
H8: Evidence for general relativity
1 CT3340 Research Methodology for Computer Science and Engineering Theory of Science GOLEM ANALYSIS OF SCIENTIFIC CONFIRMATION: THEORY OF RELATIVITY, COLD.
The Michelson-Morley Experiment
Astronomy 1143 – Spring 2014 Lecture 19: General Relativity.
Relativistic Momentum Relativistic Energy An object of mass m moving at velocity v has a total energy given by: Recall that γ≥1 and c is a very very.
Physics 55 Monday, December 5, Course evaluations. 2.General relativity with applications to black holes, dark matter, and cosmology. 3.Hubble’s.
General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang.
Unit 13 Relativity.
General Theory of Relativity (Part 2). STOR vs GTOR Recall Special Theory looked at only inertial frames. General theory looks at accelerated frames of.
Gravity, Energy, and Light Einstein and Newton 1.
Physics Honors AB –Day 12/9 & 12/10 Special and General Relativity.
Testing General Relativity Hyperspace, Wormholes, and Warp Drives.
The quest for Gravitation Waves By Benjamin Thayer.
By: Jennifer Doran. What was Known in 1900 Newton’s laws of motion Maxwell’s laws of electromagnetism.
V Galileo: The object would land at the base of the mast. Therefore, an observer on a ship, moving (with respect to land at velocity v) will observe the.
Chapter S3 Spacetime and Gravity
Einstein’s Universe Dr Martin Hendry Dept of Physics and Astronomy,
General Theory of Relativity
Einstein’s theories of Relativity
Intro to General Relativity
General relativity Special relativity applies only to observers moving with constant velocity. Can we generalize relativity to accelerated observers.
A theory of gravity, much more general than Newton’s theory.
Newton, Einstein, and Gravity
Special Relativity Chapter 1-Class2
Special Theory Of Relativity Represented By
Presentation transcript:

1 CDT403 Research Methods in Natural Sciences and Engineering Theory of Science GOLEM ANALYSIS OF SCIENTIFIC CONFIRMATION: THEORY OF RELATIVITY Gordana Dodig-Crnkovic School of Innovation, Design and Engineering Mälardalen University

2 GOLEM ANALYSIS OF SCIENTIFIC CONFIRMATION PROCESS THEORY OF RELATIVITY CONFIRMED

3 Two Experiments that ”Proved” the Theory of Relativity The Golem (Collins, Pinch)

4 Michelson-Morley Experiment After the development of Maxwell's theory of electromagnetism, several experiments were performed to prove the existence of ether and its motion relative to the Earth. The most famous and successful was the one now known as the Michelson-Morley experiment, performed by Albert Michelson and Edward Morley. These two scientists conducted one of the most important null result experiments in history in 1887.

5 Michelson-Morley Experiment Using an interferometer floating on a pool of mercury, they tried to determine the existence of an ether wind by observing interference patterns between two light beams. One beam traveling with the "ether wind" as the earth orbited the sun, and the other at 90º to the ether wind. If light was a wave, then the speed of light should vary with the earth's motion through the ether - for example, like a boat traveling up and down stream; sometimes the current increases the boat's relative speed, other time it hinders, or slows, the boat's speed relative to the shore.

6 Michelson-Morley Experiment The interference fringes produced by the two reflected beams were observed in the telescope. It was found that these fringes did not shift when the table was rotated. That is, the time required to travel one leg of the interferometer never varied with the time required to travel its normal counterpart. They NEVER got a changing interference pattern.

7

8

9 Michelson-Morley Experiment The experiment helped to refute the hypothesis that the earth is in motion relative to an ether through which light propagates. The null results of the experiment indicated that the speed of light is a constant, independent of its direction of propagation. Another consequence of Michelson-Morley experiment was the building skepticism in the existence of the ether.

10 Michelson-Morley Experiment In 1907 Michelson was awarded the Nobel Prize in Physics for his work in spectroscopy and precision optical instruments.

11 Eddington’s 1919 Eclipse Experiment Newton's Theory of Gravitation (1687) is one of the most important theories in the history of science. It is not able to describe both the falling of an apple, and the formation of a galaxy. The equation of gravitational force is: [1]

12 When Newton published “Opticks” in 1704, he believed in the corpuscular nature of light, and he ensured that it must exist a relation between light and matter, with the form of a gravitational force ruled by equation [1].

13 In 1804 (two centuries ago), Soldner was the first who calculated that, for small angles, the Newtonian deflection of light by a massive object should be: [2] where M is the mass of the deflecting object and R is the deflection impact parameter. For a light ray grazing the Sun this gives a deflection angle  0.85´´ (a scheme is shown in the following figure).

14 Newtonian angle of deflection of light by the Sun

15 Although Newton’s Theory of Gravitation was acepted by scientists along centuries, it was not able to explain several anomalies, the most famous of these being the perihelion shift of Mercury. Classical mechanics could explain the majority of the observed shift, but a residual shift of about 40 seconds of arc per century could not be explained by the gravitational effects of other planets. (A second of arc is 1/3600 of a degree). Anomalies unexplained by Newtonian theory

16 The Precession of Mercury's Orbit Most of the effect is due to the pull from the other planets but there is a measurable effect due to the corrections to Newton's theory predicted by the General Theory of Relativity.

17 During the earlier part of this century, Einstein extended his Special Theory of Relativity to generalized, or accelerating reference frames. From this study emerged a new description of gravity which saw gravitational force as the curvature of a space-time, the curvature being due to the presence of mass. Gravitational force as the curvature of a space-time

18 Einstein’s General Relativity not only explained the residual shift in Mercury's perihelion, but also predicted other effects, including the bending of light in a gravitational field. General Relativity predicts that the bending angle for a light ray in the vicinity of a point mass to be: [3] precisely double the value expected from Newtonian gravity (see equation [2])!

19 Einstein’s angle of deflection of light by the Sun. Eddington’s experiment

20 In 1919, Eddington (on Principe Island) and Crommlin (in Brazil), monitored the position of the stelar background during the solar eclipse of the May, and they obtained a value for the deflecting angle of light by the sun of 1.98 and 1.60 seconds of arc respectively, with quoted errors of 0.30 seconds. These results confirmed the Einstein’s prediction

21 Eddington found that the star had indeed shifted position, and by the amount predicted by the equations of General Relativity. This apparent shift of a star's light as it passed close to the sun on its way toward us was the first physical evidence in support of Einstein's General Relativity. Eddington’s 1919 Eclipse Experiment

22 Einstein and Eddington

23 Since Eddington, an enormous number of experiments to test Einstein's theory of General Relativity has confirmed it. Not a single experiment to this day has cast the doubt on Einstein’s theory. * And in science, that's saying a lot, because the very nature of scientific endeavor is to challenge the models we have. We are always trying to disprove Relativity, to look for a flaw, an inconsistency, but none has yet been found. *(However something interesting is currently going on with neutrino experiments !): apparently-moving-faster-than-light.ars

Gravitational Lensing

25 Light deflection or Gravitational Lensing (GL) Concept of “Einstein Ring”

26 Gravitational Lensing

27 In this cosmic ‘gravitational lens,’ a huge cluster of galaxies distorts the light from more distant galaxies into a pattern of giant arcs. Gravitational Lensing

28 Gravitational Lensing

29 Warping of Space The curvature — or warping — of space was originally proposed by Einstein as early as 1915 in his theory of General Relativity. It takes rather massive objects, like clusters of galaxies, to make space curve so much that the effect is observable in deep images of the distant Universe. So far gravitational lenses have mainly been observed around clusters of galaxies, the collections of hundreds or thousands of galaxies thought to be the largest gravitationally bound structures in the Universe.

30 Newton's Law of Universal Gravitation has Several Problems 1.It gave the wrong prediction for the precession of the perihelion of Mercury's orbit. 2.It did not explain why gravitational acceleration is independent of the mass or composition of an object. 3.Instantaneous force of gravitational attraction between two objects means information about the location of one object would be transmitted to another object instantaneously by changes in the gravitational force. 4.Incorrect predictions for gravitational lensing

31 Einstein's General Theory of Relativity GR solved all three of the above problems, and at the same time it radically changed physicists' view of the Universe. The main features of General Relativity are: 1. Space and space-time are not rigid frameworks in which events take place. They have form and structure which are influenced by the matter and energy content of the universe. 2. Matter and energy defines space (and space-time) curvature. 3. Space defines how matter moves. In particular small objects travel along the straightest possible lines in curved space (space-time).

32 In curved space the rules of Euclidean geometry are changed. Parallel lines can meet, and the sum of the angles in a triangle can be more, or less than 180 degrees, depending on how space is curved. Einstein's theory gave a correct prediction for the perihelion shift of Mercury. It also explained why objects fall independent of their mass: they all follow the same straightest possible line in curved space-time. Einstein's General Theory of Relativity

33 Finally, in Einstein's theory the instantaneous gravitational force is replaced by the curvature of space-time. Moving a mass causes ripples in this curvature, and these ripples travel with the speed of light. Thus, a distant mass would not feel any instantaneous change in the gravitational force. Einstein's General Theory of Relativity

34 Golem’s Critique of Experimental Methods To understand the true story of how scientific advances occur, Trevor Pinch, Professor of Science and Technology Studies and Professor of Sociology at Cornell University and sociologist of science Harry Collins, Professor of Sociology, Cardiff University and School of Social Sciences, have studied contemporary descriptions of some historic experiments. The results, they say, do not agree with modern views of the experiments.

35 Golem’s Critique of Experimental Methods Take, for example, the test by Eddington, of Einstein's prediction that gravity bends light. Eddington wanted to track starlight passing near the sun, and he used the sun's approximate mass to calculate the deflection predicted by Einstein. The measurements had to be precise, since the calculated deflection was a hair-thin  1/3600-degree. Since the sun's gravity would be bending the light, Eddington had to measure a star almost directly behind the sun.

36 The Experimental Situation in Eddington’s experiments Because the sun's ligt would normally obscure the star, he had to work during a solar eclipse, meaning he had to set up a small, field telescope in a part of the world under a total eclipse. Because the comparison pictures (those not affected by the sun's gravity) had to be taken at night, Eddington had to take into account the temperature-induced size changes in the telescope. That tiny increment was about equal to the gravity-induced deflection being sought.

37 SCIENTIFIC METHOD Carl Popper: experiment (always specific) cannot prove, only support/confirm/corroborate theory that is always general.

38 SCIENCE IN CONSTANT PROGRESS Science is constantly improving its theoretical and practical basis. Einstein’s theory represents a new and broader framework in which - geometry (for Newton it was Euclidean geometry) was generalized to curved space-time - velocities are allowed to reach speed of light which causes time dilatation and space contraction In the classical limit Einstein’s theory gives Newtonian equations.