固体力学基础 张俊乾 jqzhang2@shu.edu.cn 近代力学基础 第二讲 固体力学基础 张俊乾 jqzhang2@shu.edu.cn.

Slides:



Advertisements
Similar presentations
INTRODUCTION TO MECHANICS FOR SOLIDS AND STRUCTURES
Advertisements

1 Unsymmetrical and/or inhomogeneous cross sections | CIE3109 CIE3109 Structural Mechanics 4 Hans Welleman Module : Unsymmetrical and/or inhomogeneous.
Chapter 9 Extension, Torsion and Flexure of Elastic Cylinders
Distribution of Microcracks in Rocks Uniform As in igneous rocks where microcrack density is not related to local structures but rather to a pervasive.
Chapter 8 Two-Dimensional Problem Solution
Read Chapter 1 Basic Elasticity - Equilibrium Equations
Constitutive Relations in Solids Elasticity
APPLIED MECHANICS Lecture 10 Slovak University of Technology
Fundamentals of Elasticity Theory
ECIV 520 A Structural Analysis II
Formulation of Two-Dimensional Elasticity Problems
Unit 3: Solid mechanics An Introduction to Mechanical Engineering: Part Two Solid mechanics Learning summary By the end of this chapter you should have.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
Theory of Elasticity Theory of elasticity governs response – Symmetric stress & strain components Governing equations – Equilibrium equations (3) – Strain-displacement.
4 Pure Bending.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
电荷传递之处.
Application Solutions of Plane Elasticity
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
CHAP 6 FINITE ELEMENTS FOR PLANE SOLIDS
Plane problems in FEM analysis
CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES
9 Deflection of Beams.
10 Pure Bending.
Chapter 5 Formulation and Solution Strategies
Chapter 7 Two-Dimensional Formulation
Conservation Laws for Continua
Chapter 11 Bending of Thin Plates 薄板弯曲
Chapter 9 Two-Dimensional Solution
ME 520 Fundamentals of Finite Element Analysis
11 Elements of Solid Mechanics Zhang Junqian
Chapter 2 Stress and Strain -- Axial Loading
9 Torsion.
1 第二讲 固体力学基础 张俊乾 近代力学基础. 2 Contents 1.Stress and Kinetics 2.Strain and Kinematics 3.Constitutive Models for Materials 4.Material Failure.
Chapter 6. Plane Stress / Plane Strain Problems
MECHANICS OF MATERIALS Fourth Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
Stress and Strain – Axial Loading
Stress and Strain – Axial Loading
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
Institute of Applied Mechanics8-0 VIII.3-1 Timoshenko Beams (1) Elementary beam theory (Euler-Bernoulli beam theory) Timoshenko beam theory 1.A plane normal.
3 Torsion.
CHAPTER OBJECTIVES To show how to transform the stress components that are associated with a particular coordinate system into components associated with.
MECH4450 Introduction to Finite Element Methods Chapter 6 Finite Element Analysis of Plane Elasticity.
EGM 5653 Advanced Mechanics of Materials
Boundary Value Problems in Elasticity
Engg College Tuwa Mechanics of Solids.( ) Presented by: PARMAR CHETANKUMAR VIKRAMSINH PARMAR NILESHKUMAR NATVARLAL PARMAR.
Theory of Elasticity 弹性力学 Chapter 7 Two-Dimensional Formulation 平面问题基本理论.
BME 315 – Biomechanics Chapter 4. Mechanical Properties of the Body Professor: Darryl Thelen University of Wisconsin-Madison Fall 2009.
Dynamics of point particle system 质点系动力学 Center of mass, center of mass frame Define center of mass Total momentum.
Plane Strain and Plane Stress
Mechanics of Materials -Beams
Theory of Elasticity Chapter 10 Three-Dimensional Problems.
ANSYS Basic Concepts for ANSYS Structural Analysis
11 Energy Methods.
Stress and Strain – Axial Loading
Stress and Strain – Axial Loading
Solid Mechanics Course No. ME213.
Mechanics of Solids I Energy Method.
Continuum Mechanics (MTH487)
9 Deflection of Beams.
Review for Final Exam Basic knowledge of vector & index notation, matrix-tensor theory, coordinate transformation, principal value problems, vector calculus.
4 Pure Bending.
11 Energy Methods.
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING
UNIT – III FINITE ELEMENT METHOD
4 Pure Bending.
Presentation transcript:

固体力学基础 张俊乾 jqzhang2@shu.edu.cn 近代力学基础 第二讲 固体力学基础 张俊乾 jqzhang2@shu.edu.cn

Contents Stress and Kinetics Strain and Kinematics Constitutive Models for Materials Material Failure Boundary Value Problems

Boundary Value Problems: Basic equations 15 unknown mechanical variables

Boundary Value Problems: Basic equations Equations of equilibrium Boundary conditions Strain-displacement relations Constitutive relations Thermoelastic: 15 field equations Plastic: 4

x Boundary Value Problems: Boundary conditions q a y h Examples: x y a h q The displacement boundary condition and traction boundary condition are mutually exclusive. Either displacement or traction is specified on the boundary. They cannot be specified simultaneously. A boundary may be subjected to a combination of displacement and traction (“mixed”) boundary conditions, in other words, displacement boundary conditions in some directions may be given whereas the traction boundary conditions in remaining directions are specified. If you are solving a static problem with only tractions prescribed on the boundary, you must ensure that the total external force acting on the solid sums to zero (otherwise a static equilibrium solution cannot exist). 5

Boundary Value Problems: Boundary conditions Saint-Venant Principle 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。 P P/2 P

Boundary Value Problems: Interfacial conditions Two materials jointed together Perfect interface: Interface crack (debonding): Spring-like interface: 7

Boundary Value Problems: in terms of displacements Navier’s equations 3 field equations 8

Papkovich–Neuber’s solution (without body force) Boundary Value Problems: in terms of displacements Papkovich–Neuber’s solution (without body force) 4 harmonic functions 9

Boundary Value Problems: in terms of displacements x z P Boussinesq problem Boundary conditions: 10

Boundary Value Problems: in terms of displacements Cerruti’s problem y x z P Boundary conditions: 11

Flat punch indenting a half-space Boundary Value Problems: in terms of displacements Flat punch indenting a half-space Boundary conditions: distributed pressure: Governing eqaution: Solution: 12

Boundary Value Problems: 2-dimensional Plane strain Plane stress t x y z b a 13

Boundary Value Problems: 2-dimensional Constitutive equations for isotropic elasticity Plane strain Plane stress

Rectangular coordinates Boundary Value Problems: 2-dimensional Airy Function Polar coordinates Rectangular coordinates 15

Airy Function: Polynomials Boundary Value Problems: 2-dimensional Airy Function: Polynomials Polynomial of degree 2 Chapter 5.4 24

Airy Function: Polynomials Boundary Value Problems: 2-dimensional Airy Function: Polynomials Polynomial of degree 3 Pure bending Chapter 5.4 24

Boundary Value Problems: 2-dimensional Lateral Bending of a Slender Rectangle BCs : Chapter 5.4 26

A Hole Under Remote Shear Boundary Value Problems: 2-dimensional A Hole Under Remote Shear BCs : Chapter 5.5 48

A Hole Under Remote Shear Boundary Value Problems: 2-dimensional A Hole Under Remote Shear Stresses Along the rim of the hole The maximum hoop stress Chapter 5.5 50

Boundary Value Problems: 2-dimensional A Circular Hole Under Tension BCs : Chapter 5.5 54

Pure Bending of Curved Beams Boundary Value Problems: 2-dimensional Pure Bending of Curved Beams Boundary conditions: Weak form 3

Boundary Value Problems: 2-dimensional A curved beam loaded by a transverse force boundary conditions 6

Boundary Value Problems: 2-dimensional Stresses: BCs:

Boundary Value Problems: 2-dimensional or Chapter 6.3 22