Rosetta_CD\PR\what_is_RS.ppt, :39AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 The retrieval S.Tellmann, M.Pätzold ESAC June 2008
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 2 Overview LEVEL 3: The data preparation Calculation of bending angle and rayparameter The Abel Transformation LEVEL 4: The Neutral Atmosphere Calculation of Density Temperature Pressure The Ionosphere Calculation of the electron density
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 3 Level 3 Retrieval of the Refractivity and the Radius
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 4 Level 3 Data Processing Flow Chart Input: Level 2 residual
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 5 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 6 Starting Point: Residual Starting point: Level 2 residual Offset Offset (and/or trend): Reason Uncertainties in Orbit
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 7 Baseline Fit Correction Starting point: Level 2 residual Offset range for baseline fit radius: ~ 4000 km
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 8 Residual after Correction
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 9 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Measurement Geometry Occultation Plane
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 10 Next Goal: Calculation of Bending angle & Rayparameter : bending angle a: rayparameter
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 11 Next Goal: Calculation of Bending angle & Rayparameter : bending angle a: rayparameter Measurement geometry must be known: Occultation Plane containing Groundstation Planet Spacecraft given by: z: vector from groundstation to planet r: vector perpendicular to z and in this OCC plane
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 12 Occultation (OCC) plane Radio Link MEX orbit OCC plane at time t m Earth direction Calculation of state vectors for every measurement sample P MEX,V MEX P G/S,V G/S
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 13 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Bending Angle & Rayparameter Calculation of Measurement Geometry Occultation Plane
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 14 Next Goal: Calculation of Bending angle & Rayparameter : bending angle a: rayparameter Solve equations from [Fjeldbo et al., 1971]: B · ( ) = ( ) where b 11 = -v rs sin( e – r ) + v zs cos( e – r ) b 12 = -v rt cos( s – r ) + v zt sin( s – r ) b 21 = (r s + z s ) 1/2 sin(b e – – r ) b 22 = z t cos( s – r ) k 1 = c f/f s + v rs [cos( e – r ) – cos e ] + v zs [sin( e – r ) – sin e ] - v rt [sin( s – r ) – sin s ] – v zt [cos( s – r ) – cos s ] k 2 = z t sin( s – r ) + (r s 2 -z s 2 ) 1/2 sin( e – – r ) r r k1k1 k2k2
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 15 bending angle = r + r rayparameter a = (r s 2 + z s 2 ) 1/2 sin( e – r – ) Calculation of Bending angle & Rayparameter
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 16 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Bending Angle & Rayparameter Abel Transformation Calculation of Refractivity & Radius Calculation of Measurement Geometry Occultation Plane
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 17 Calculation of Refractivity & Radius Refractive index n n Refractivity Radius r
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 18 Algorithm for the calculation of the refractive index via an Abel transform Initialise a vector of dimension ‚i‘ To store the row integrals Current rayparameter of layer ‚i‘ Upper and lower boundary of the current row integral Bending angle of the current layer Call of the integration function and storing of the integral output Summing up of the array Zintegral
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 19 Algorithm for the calculation of the refractive index via an Abel transform Initialise a vector of dimension ‚i‘ To store the row integrals Current rayparameter of layer ‚i‘ Upper and lower boundary of the current row integral Bending angle of the current layer Call of the integration function and storing of the integral output Summing up of the array Zintegral INTEGRAL: Integration routine able to handle the pole
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 20 Calculation of Refractivity radius [km] Bending Angle Refractivity Abeltransform Bending angle [deg * 10 6 ] Refraktivität [deg * 10 6 ]
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 21 The Occultation Footpoints x Occultation footpoint Moving over the surface of Mars Spacecraft Earth direction
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 22 The Occultation Footpoints Calculation of intersection point of ray asymptotes using spherical symmetry Transformation of this vector into planetary coordinates (lat, lon) for every measurement value
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 23 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Bending Angle & Rayparameter Abel Transformation Calculation of Refractivity & Radius Calculation of Measurement Geometry Occultation Plane Main Output: Refractivity, Radius & OCC Footpoints Calculation of Occultation Footpoints
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 24 Level 4 The Neutral Atmosphere
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 25 Starting Point: Refractivity Ionosphere: Negative Refraktivity higher than ~ 80 km altitude approx km radius Transition Region: no significant bending approx. 60 km – 80 km altitude approx km – 3480 km Neutral Atmosphere: positive Refractivity up to approx. 50 km altitude up to approx km radius Neutral Atmosphere Ionosphere Ionopause Transition Region
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 26 The Neutral Number Density : refractivity C 1 : atmospheric constant k : Boltzman constant n : neutral number density C 1 is based on the atmospheric composition (CO 2, N 2, Ar) C 1 = K·m·s 2 /kg known from laboratory measurements [Hinson et al., 1999].
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 27 Ideal gas law relates Pressure, Temperature and Density Hydrostatic equilibrium in well-mixed atmosphere: temperature can be derived directly from neutral number density Calculation of Pressure and Temperature
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 28 Ideal gas law relates Pressure, Temperature and Density Hydrostatic equilibrium in well-mixed atmosphere: temperature can be derived directly from neutral number density Calculation of Pressure and Temperature upper boundary condition
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 29 Upper boundary condition of temperature T up = 150 K T up = 160 K T up = 170 K
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 30 Level 4 Neutral Atmosphere Data Processing Flow Chart Input: Refractivity Profile Calculation of Neutral Number Density Calculation of Temperature and Pressure Main Output: Profiles of Temperature, Pressure and Density
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 31 Level 4 The Ionosphere
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 32 The Electron Density f 0 : Radio link frequency N e : electron density C 3 = 40.31
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 33 The Electron Density
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere 35.0°N
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere Typical daytime profile middle latitude 35.0°N
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere morning profile inversion in boundary layer 35.0°N
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere Stationary wave structures 35.0°N
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 38 Comparison with Model: middle latitudes MaRS GCM low dust GCM med. dust GCM high dust
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 39 Comparison with Model: 60° N MaRS GCM low dust GCM med. dust GCM high dust
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 40 Comparison with Model: 63° N MaRS GCM low dust GCM med. dust GCM high dust
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 41 Comparison with Model: Winter Night MaRS GCM (LMD) Temperature [K] altitude [km] planetary latitude [deg]
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 42 Autumn profiles L s = 250° – 265° L s = 227° – 235°
Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 43 Autumn & Winter profiles L s = 250° – 265° L s = 227° – 235° L s = 345° – 15°