Rosetta_CD\PR\what_is_RS.ppt, 04.09.2015 18:39AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 The retrieval S.Tellmann,

Slides:



Advertisements
Similar presentations
Rosetta_CD\PR\what_is_RS_v4.ppt, :45AM, 1 Mars Data Workshop Mars Express Radio Science MaRS Data Products, Part II Martin Pätzold, Silvia.
Advertisements

Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Basics & Motivation Technique & Observations Fits & Measurements Summary & Outlook Atmospheric Wave Workshop ESTEC 11/10/2011 Tobias Stangier I st Physics.
1 Ionospheres of the Terrestrial Planets Stan Solomon High Altitude Observatory National Center for Atmospheric Research
Chapter Fifteen: Radio-Wave Propagation
Air Pressure and Winds III
Atmospheric Refraction
Session 2, Unit 3 Atmospheric Thermodynamics
Stellar Interior. Solar Facts Radius: –R  = 7  10 5 km = 109 R E Mass : –M  = 2  kg –M  = 333,000 M E Density: –   = 1.4 g/cm 3 –(water is.
METO 621 Lesson 5. Natural broadening The line width (full width at half maximum) of the Lorentz profile is the damping parameter, . For an isolated.
Lesson 2 AOSC 621. Radiative equilibrium Where S is the solar constant. The earth reflects some of this radiation. Let the albedo be ρ, then the energy.
Temperature, pressure, and winds. Review of last lecture Earth’s energy balance at the top of the atmosphere and at the surface. What percentage of solar.
Determination of upper atmospheric properties on Mars and other bodies using satellite drag/aerobraking measurements Paul Withers Boston University, USA.
IPPW- 9 Royal Observatory of Belgium 20 June Von Karman Institute for Fluid Dynamics Obtaining atmospheric profiles during Mars entry Bart Van Hove.
2 nd GRAS SAF User Workshop 1 Radio Occultation and Multipath Behavior Kent Bækgaard Lauritsen Danish Meteorological Institute (DMI), Denmark 2 nd GRAS.
GPS / RO for atmospheric studies Dept. of Physics and Astronomy GPS / RO for atmospheric studies Panagiotis Vergados Dept. of Physics and Astronomy.
Solar System Physics I Dr Martin Hendry 5 lectures, beginning Autumn 2007 Department of Physics and Astronomy Astronomy 1X Session
the Ionosphere as a Plasma
GPS radio occultation Sean Healy DA lecture, 28th April, 2008.
Chapter 17 Notes: The Atmosphere. What is the Atmosphere? The atmosphere can be defined as the portion of planet earth that contains gas. Weather can.
NATS 101 Lecture 2 Vertical Structure of the Atmosphere.
The Atmosphere Essential Question: What is the significance of the atmosphere to the existence of life on earth? pp
Atmospheric pressure and winds
Ch 17 - The Atmosphere Vocab Charts (Example) WordDefinitionPicture Weather the state of the atmosphere at a given time and place.
The Intrinsic Magnetic Field of Saturn: A Special One or an Averaged One? H. Cao, C. T. Russell, U. R. Christensen, M. K. Dougherty Magnetospheres of the.
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
What set the atmosphere in motion?. Review of last lecture Thickness of the atmosphere: less than 2% of Earth’s thickness Thickness of the atmosphere:
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Chapter 9 The Sun.
Vertical Wavenumber Spectrum of Gravity Waves at the Northern High Latitude Region in the Martian Atmosphere Hiroki Ando.
Abstract: A simple representative model of the ionosphere of Mars is fit to the complete set of electron density profiles from the Mars Global Surveyor.
Linear and nonlinear representations of wave fields and their application to processing of radio occultations M. E. Gorbunov, A. V. Shmakov Obukhov Institute.
EART 160: Planetary Science 20 February Last Time Elastic Flexure Paper Discussion – Titan Atmosphere –Tobie et al., 2005 Planetary Atmospheres.
The ionosphere of Mars never looked like this before Paul Withers Boston University Space Physics Group meeting, University of Michigan.
What set the atmosphere in motion?
Vertical Wavenumber Spectra of Gravity Waves in the Venus and Mars Atmosphere *Hiroki Ando, Takeshi Imamura, Bernd Häusler, Martin Pätzold.
Atmospheric Structure and Composition. Atmosphere: The thin envelope of gases surrounding the earth Highly compressible Density decreases rapidly with.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Earth’s protective bubble
A new concept radio occultation experiment to study the structure of the atmosphere and determine the plasma layers in the ionosphere. Gavrik A.L. Kotelnikov.
Rosetta_CD\PR\what_is_RS.ppt, :26AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 Basics S.Tellmann,
2 nd GRAS-SAF USER WORKSHOP Assimilation of GPS radio occultation measurements at DAO (soon GMAO) P. Poli 1,2 and J. Joiner 3 Data Assimilation Office.
1 Volatile Exchange on Mars Maria T. Zuber MIT David E. Smith NASA/GSFC 16 th International Workshop on Laser Ranging Poznan, Poland 13 October 2008 NASA/MRO/HiRISE.
Abstract Dust storms are well known to strongly perturb the state of the lower atmosphere of Mars, yet few studies have investigated their impact on the.
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
Improving GPS RO Stratospheric Retrieval for Climate Benchmarking Chi O. Ao 1, Anthony J. Mannucci 1, E. Robert Kursinski 2 1 Jet Propulsion Laboratory,
Refraction of Light Optical density a property of a transparent material that is an inverse measure of the speed of light through a material Optical refraction.
Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo.
Towards a Robust and Model- Independent GNSS RO Climate Data Record Chi O. Ao and Anthony J. Mannucci 12/2/15CLARREO SDT Meeting, Hampton, VA1 © 2015 California.
An observational study of the response of the thermosphere of Mars to lower atmospheric dust storms Paul Withers and Robert Pratt Boston University – Abstract.
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
Air Pressure and Winds II. RECAP Ideal gas law: how the pressure, the temperature and the density of an ideal gas relay to each other. Pressure and pressure.
PACER GAP Science Report May 22, 2008 Herman Neal, Mozella Bell, Matthew Ware.
7 – Group 임지유, 김도형, 방주희. Consider a layer of the atmosphere in which ( Γ
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
Solar Energy to Earth and the Seasons
Using the Mars climate Database for aerobraking ( km)
The Atmosphere.
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
A mixture of gases that surrounds a planet
ATOC 4720 class31 1. Coordinate systems 2. Forces.
Ionospheric Effect on the GNSS Radio Occultation Climate Data Record
Retrieval Analysis and Methodologies in Atmospheric Limb Sounding Using the GNSS Radio Occultation Technique PhD Defence by Stig Syndergaard.
Definitions Atmosphere: The thin envelope of gases surrounding the earth Highly compressible Density decreases rapidly with height Air: A mechanical mixture.
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
Comparisons and simulations of same-day observations of the ionosphere of Mars by radio occultation experiments on Mars Global Surveyor and Mars Express.
Effects and magnitudes of some specific errors
Challenges of Radio Occultation Data Processing
The Vertical Structure of the Martian Ionosphere
The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment by J. T. Schofield, J. R. Barnes, D. Crisp, R. M. Haberle, S.
Presentation transcript:

Rosetta_CD\PR\what_is_RS.ppt, :39AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 The retrieval S.Tellmann, M.Pätzold ESAC June 2008

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 2 Overview LEVEL 3: The data preparation Calculation of bending angle and rayparameter The Abel Transformation LEVEL 4: The Neutral Atmosphere Calculation of Density Temperature Pressure The Ionosphere Calculation of the electron density

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 3 Level 3 Retrieval of the Refractivity and the Radius

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 4 Level 3 Data Processing Flow Chart Input: Level 2 residual

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 5 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 6 Starting Point: Residual Starting point: Level 2 residual Offset Offset (and/or trend): Reason Uncertainties in Orbit

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 7 Baseline Fit Correction Starting point: Level 2 residual Offset range for baseline fit radius: ~ 4000 km

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 8 Residual after Correction

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 9 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Measurement Geometry Occultation Plane

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 10 Next Goal: Calculation of Bending angle & Rayparameter  : bending angle a: rayparameter

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 11 Next Goal: Calculation of Bending angle & Rayparameter  : bending angle a: rayparameter Measurement geometry must be known: Occultation Plane containing Groundstation Planet Spacecraft given by: z: vector from groundstation to planet r: vector perpendicular to z and in this OCC plane

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 12 Occultation (OCC) plane Radio Link MEX orbit OCC plane at time t m Earth direction Calculation of state vectors for every measurement sample P MEX,V MEX P G/S,V G/S

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 13 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Bending Angle & Rayparameter Calculation of Measurement Geometry Occultation Plane

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 14 Next Goal: Calculation of Bending angle & Rayparameter  : bending angle a: rayparameter Solve equations from [Fjeldbo et al., 1971]: B · ( ) = ( ) where b 11 = -v rs sin(  e –  r ) + v zs cos(  e –  r ) b 12 = -v rt cos(  s –  r ) + v zt sin(  s –  r ) b 21 = (r s + z s ) 1/2 sin(b e –  –  r ) b 22 = z t cos(  s –  r ) k 1 = c  f/f s + v rs [cos(  e –  r ) – cos  e ] + v zs [sin(  e –  r ) – sin  e ] - v rt [sin(  s –  r ) – sin  s ] – v zt [cos(  s –  r ) – cos  s ] k 2 = z t sin(  s –  r ) + (r s 2 -z s 2 ) 1/2 sin(  e –  –  r )  r  r k1k1 k2k2

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 15 bending angle  =  r +  r rayparameter a = (r s 2 + z s 2 ) 1/2 sin(  e –  r –  ) Calculation of Bending angle & Rayparameter

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 16 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Bending Angle & Rayparameter Abel Transformation Calculation of Refractivity & Radius Calculation of Measurement Geometry Occultation Plane

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 17 Calculation of Refractivity & Radius Refractive index n n Refractivity  Radius r

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 18 Algorithm for the calculation of the refractive index via an Abel transform Initialise a vector of dimension ‚i‘ To store the row integrals Current rayparameter of layer ‚i‘ Upper and lower boundary of the current row integral Bending angle of the current layer Call of the integration function and storing of the integral output Summing up of the array Zintegral

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 19 Algorithm for the calculation of the refractive index via an Abel transform Initialise a vector of dimension ‚i‘ To store the row integrals Current rayparameter of layer ‚i‘ Upper and lower boundary of the current row integral Bending angle of the current layer Call of the integration function and storing of the integral output Summing up of the array Zintegral INTEGRAL: Integration routine able to handle the pole

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 20 Calculation of Refractivity radius [km]   Bending Angle Refractivity Abeltransform Bending angle [deg * 10 6 ] Refraktivität [deg * 10 6 ]

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 21 The Occultation Footpoints x Occultation footpoint Moving over the surface of Mars Spacecraft Earth direction

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 22 The Occultation Footpoints Calculation of intersection point of ray asymptotes using spherical symmetry Transformation of this vector into planetary coordinates (lat, lon) for every measurement value

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 23 Level 3 Data Processing Flow Chart Input: Level 2 residual Baseline fit correction Calculation of Bending Angle & Rayparameter Abel Transformation Calculation of Refractivity & Radius Calculation of Measurement Geometry Occultation Plane Main Output: Refractivity, Radius & OCC Footpoints Calculation of Occultation Footpoints

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 24 Level 4 The Neutral Atmosphere

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 25 Starting Point: Refractivity Ionosphere: Negative Refraktivity higher than ~ 80 km altitude approx km radius Transition Region: no significant bending approx. 60 km – 80 km altitude approx km – 3480 km Neutral Atmosphere: positive Refractivity up to approx. 50 km altitude up to approx km radius Neutral Atmosphere Ionosphere Ionopause Transition Region

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 26 The Neutral Number Density  : refractivity C 1 : atmospheric constant k : Boltzman constant n : neutral number density C 1 is based on the atmospheric composition (CO 2, N 2, Ar) C 1 = K·m·s 2 /kg known from laboratory measurements [Hinson et al., 1999].

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 27 Ideal gas law relates Pressure, Temperature and Density Hydrostatic equilibrium in well-mixed atmosphere: temperature can be derived directly from neutral number density Calculation of Pressure and Temperature

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 28 Ideal gas law relates Pressure, Temperature and Density Hydrostatic equilibrium in well-mixed atmosphere: temperature can be derived directly from neutral number density Calculation of Pressure and Temperature upper boundary condition

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 29 Upper boundary condition of temperature T up = 150 K T up = 160 K T up = 170 K

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 30 Level 4 Neutral Atmosphere Data Processing Flow Chart Input: Refractivity Profile Calculation of Neutral Number Density Calculation of Temperature and Pressure Main Output: Profiles of Temperature, Pressure and Density

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 31 Level 4 The Ionosphere

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 32 The Electron Density f 0 : Radio link frequency N e : electron density C 3 = 40.31

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 33 The Electron Density

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere 35.0°N

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere Typical daytime profile middle latitude 35.0°N

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere morning profile inversion in boundary layer 35.0°N

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, Autumn 2005 Autumn 2005 Spring Temperature Profiles Northern Hemisphere Stationary wave structures 35.0°N

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 38 Comparison with Model: middle latitudes MaRS GCM low dust GCM med. dust GCM high dust

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 39 Comparison with Model: 60° N MaRS GCM low dust GCM med. dust GCM high dust

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 40 Comparison with Model: 63° N MaRS GCM low dust GCM med. dust GCM high dust

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 41 Comparison with Model: Winter Night MaRS GCM (LMD) Temperature [K] altitude [km] planetary latitude [deg]

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 42 Autumn profiles L s = 250° – 265° L s = 227° – 235°

Rosetta_CD\PR\what_is_RS_v4.ppt, :39AM, 43 Autumn & Winter profiles L s = 250° – 265° L s = 227° – 235° L s = 345° – 15°