Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,

Slides:



Advertisements
Similar presentations
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Advertisements

 Light can take the form of beams that comes as close
Course outline Maxwell Eqs., EM waves, wave-packets
Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Single-Shot Tomographic Imaging of Evolving, Light Speed Object Zhengyan Li, Rafal Zgadzaj, Xiaoming Wang, Yen-Yu Chang, Michael C. Downer Department of.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Ariadna study : Space-based femtosecond laser filamentation Vytautas Jukna, Arnaud Couairon, Carles Milián Centre de Physique théorique, CNRS École.
Diffraction See Chapter 10 of Hecht.
Overview from last week Optical systems act as linear shift-invariant (LSI) filters (we have not yet seen why) Analysis tool for LSI filters: Fourier transform.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
COMPUTER MODELING OF LASER SYSTEMS
Evan Walsh Mentors: Ivan Bazarov and David Sagan August 13, 2010.
Photonic Crystals and Negative Refraction Dane Wheeler Jing Zhang.
Chris A. Mack, Fundamental Principles of Optical Lithography, (c) Figure 3.1 Examples of typical aberrations of construction.
Dimitris Papazoglou Assistant Professor, Affiliated faculty IESL-FORTH Senior member of the UNIS group PhD: 1998, Aristotle University of Thessaloniki,
Trevor Hall ELG5106 Fourier Optics Trevor Hall
Generation of short pulses
Surface-waves generated by nanoslits Philippe Lalanne Jean Paul Hugonin Jean Claude Rodier INSTITUT d'OPTIQUE, Palaiseau - France Acknowledgements : Lionel.
Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages Ratneshwar Jha, Clarkson University S. Gopalakrishnan, Indian Institute.
Using Atomic Diffraction to Measure the van der Waals Coefficient for Na and Silicon Nitride J. D. Perreault 1,2, A. D. Cronin 2, H. Uys 2 1 Optical Sciences.
Wave Optics. Wave Optics wave fronts (surfaces of constant action) are orthogonal to rays (a) spherical wave, (b) plane wave (c) dipole wave, (d) dipole.
Using Atomic Diffraction to Measure the van der Waals Coefficient for Na and Silicon Nitride J. D. Perreault 1,2, A. D. Cronin 2, H. Uys 2 1 Optical Sciences.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Higher order laser modes in gravitational wave detectors
Introductio n The guiding of relativistic laser pulse in performed hollow plasma channels Xin Wang and Wei Yu Shanghai Institute of Optics and Fine Mechanics,
Ultra-intense Laser Pulse Propagation in Gaseous and Condensed Media Jerome V Moloney and Miroslav Kolesik Arizona Center for Mathematical Sciences.
Dry Laser Cleaning and Focusing of Light in Axially Symmetric Systems Johannes Kofler and Nikita Arnold Institute for Applied Physics Johannes Kepler University.
Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
Quantitative Phase Amplitude Microscopy of Three Dimensional Objects C.J. Bellair §,+, C.L. Curl #, B.E.Allman*, P.J.Harris #, A. Roberts §, L.M.D.Delbridge.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
Engineering Optics Understanding light? Reflection and refraction Geometric optics (
Focusing of Light in Axially Symmetric Systems within the Wave Optics Approximation Johannes Kofler Institute for Applied Physics Johannes Kepler University.
Electric and magnetic fields fluctuating together can form a propagating electromagnetic wave. An electromagnetic wave is a transverse wave, the electric.
Non- paraxiality and femtosecond optics Lubomir M. Kovachev Institute of Electronics, Bulgarian Academy of Sciences Laboratory of Nonlinear and Fiber Optics.
Abstract Although the sine-Gordon equation was originally obtained for the description of four wave-mixing in transmission geometry, it describes self-diffraction.
Trivia Question Under President Ronald Reagan, what was the nickname of the science initiative to develop, among other things, a laser which could should.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
ABSTRACT The design of a complete system level modeling and simulation tool for optical micro-systems is the focus of our research . We use a rigorous.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano An application of the.
R. Kupfer, B. Barmashenko and I. Bar
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
A class of localized solutions of the linear and nonlinear wave equations D. A. Georgieva, L. M. Kovachev Fourth Conference AMITaNS June , 2012,
Pulse Shaping with MIIPS SASS 8/22/2012 David Nicholson.
Munich, Germany June 2007ECBO 2007 Static depth dependent dispersion compensation in a real-time static delay line grating-based correlation OCT.
Multiple-Cone Formation during the Femtosecond-Laser Pulse Propagation in Silica Kenichi Ishikawa *, Hiroshi Kumagai, and Katsumi Midorikawa Laser Technology.
3D Laser pulse shaping for photoinjector applications Yuelin Li Accelerator Systems Division and X-ray Science Division Argonne National Laboratory
SPATIAL RESOLUTION OF NON- INVASIVE BEAM PROFILE MONITORBASED ON OPTICAL DIFFRACTION RADIATION A.P. Potylitsyn Tomsk Polytechnic University, , pr.
Modelling and Simulation of Passive Optical Devices João Geraldo P. T. dos Reis and Henrique J. A. da Silva Introduction Integrated Optics is a field of.
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
ULTRAFAST PHENOMENA – LINEAR AND NONLINEAR To present nonlinear optics as successive approximations of the semi-classical interaction between light and.
Parametric Solitons in isotropic media D. A. Georgieva, L. M. Kovachev Fifth Conference AMITaNS June , 2013, Albena, Bulgaria.
Prebunching electron beam and its smearing due to ISR-induced energy diffusion Nikolai Yampolsky Los Alamos National Laboratory Fermilab; February 24,
Appendix A : Fourier transform
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
3. Beam optics.
Interacting Airy and nonlinear beams
Using a digital micromirror device for high-precision laser-based manufacturing on the microscale Please use the dd month yyyy format for the date for.
Plasmonic waveguide filters with nanodisk resonators
Focusing performance of a bent polychromator crystal with coincidence of the polychromatic and dynamical focusing effects Symmetric transmission geometry.
Control of laser wakefield amplitude in capillary tubes
Marco Leonetti1, Salman Karbasi2, Arash Mafi2, Claudio Conti3
Scalar theory of diffraction
Scalar theory of diffraction
Scalar theory of diffraction
Scalar theory of diffraction
Scalar theory of diffraction
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Presentation transcript:

Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust, L. Furfaro, J. M. Dudley FEMTO-ST Institute University of Franche-Comté Besançon, France

Accelerating beams Airy beams are invariant solutions of the paraxial wave equation. Airy beams follow a parabolic trajectory: they are one example of accelerating beam. 2 F. Courvoisier, ICAM 2013 Siviloglou et al, Phys. Rev. Lett. 99, (2007) Propagation Transverse dimension Intensity

High-power accelerating beams 3 F. Courvoisier, ICAM 2013 Polynkin et al, Science 324, 229 (2009) Airy beams can generate curved filaments. Lotti et al, Phys. Rev. A 84, (2011) BUT: paraxial trajectories, parabolic only

Motivations 4 F. Courvoisier, ICAM 2013 Aside from the fundamental interest for novel types of light waves, accelerating beams provide a novel tool for laser material processing. Nonparaxial and arbitrary trajectories are needed.

Outline We have developed a caustic-based approach to synthesize arbitrary accelerating beams in the nonparaxial regime. I- Direct space shaping II-Fourier-space shaping III-Application to femtosecond laser micromachining 5 F. Courvoisier, ICAM 2013

Accelerating beams are caustics Accelerating beams can be viewed as caustics – an envelope of rays that forms a curve of concentrated light. The amplitude distribution is accurately described diffraction theory and allows us to calculate the phase mask. 6 F. Courvoisier, ICAM 2013 S. Vo et al, J.Opt.Soc. Am. A (2010) M. V. Berry & C. Upstill, Progress in Optics XVIII (1980) "Catastrophe optics" J. F. Nye, “Natural focusing and fine structure of light”,IOP Publishing (1999).

Sommerfeld integral for the field at M : Condition for M to be on the caustic: Accelerating beams are caustics 7 F. Courvoisier, ICAM 2013 I 0 (y) M Input Beam y z yMyM Phase mask  y=c(z) M. V. Berry & C. Upstill, Progress in Optics XVIII (1980) "Catastrophe optics" J. F. Nye, “Natural focusing and fine structure of light”,IOP Publishing (1999).

Sommerfeld integral for the field at any point from distance u of M : Condition for M to be on the caustic: This provides the equation for the phase mask: Accelerating beams are caustics 8 F. Courvoisier, ICAM 2013 I 0 (y) M Input Beam y z yMyM Greenfield et al. Phys. Rev. Lett (2011) L. Froehly et al, Opt. Express (2011) Phase mask  y=c(z)

Shaping in the direct space. Experimental setup Polarization direction 4-f telescope Ti:Sa, 100 fs 800 nm NA 0.8 F. Courvoisier, ICAM Courvoisier et al, Opt. Lett. 37, 1736 (2012)

Results Experimental results are in excellent agreement with predictions from wave equation propagation using the calculated phase profile. 10 F. Courvoisier, ICAM 2013 L. Froehly et al., Opt. Express (2011) Propagation dimension z (mm) Transverse dimension z (mm)

Results Multiple caustics can be used to generate Autofocusing waves 11 F. Courvoisier, ICAM 2013 N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010). I. Chremmos et al, Opt. Lett. 36, 1890 (2011). L. Froehly et al, Opt. Express (2011)

Nonparaxial regime Arbitrary nonparaxial accelerating beams 12 F. Courvoisier, ICAM 2013 Circle R = 35 µmParabolaQuartic Numeric Experiment Courvoisier et al, Opt. Lett. 37, 1736 (2012)

A Sommerfeld integral for the field: An optical ray corresponds to a stationary point Mapping & geometrical rays 13 F. Courvoisier, ICAM 2013 I 0 (y) Input Beam y z Greenfield et al. Phys. Rev. Lett (2011) Courvoisier et al, Opt. Lett. 37, 1736 (2012) Phase mask  y=c(z) B C A f(y) y C y B y Fold catastrophe associated to an Airy function B points realize a mapping from the SLM to the caustic

Sommerfeld integral for the field at any point from distance u of M : Non vanishing d 3 f/dy 3 yields an Airy profile: Transverse profile 14 F. Courvoisier, ICAM 2013 I 0 (y) M Input Beam u y z Input intensity profile Local radius of curvature yMyM M u Courvoisier et al, Opt. Lett. 37, 1736 (2012) Kaminer et al, Phys. Rev. Lett. 108, (2012)

The parabolic Airy beam is not diffraction free in the nonparaxial regime Circular accelerating beams are nondiffracting. Transverse profile 15 F. Courvoisier, ICAM 2013 Input intensity profile Local radius of curvature M u Courvoisier et al, Opt. Lett. 37, 1736 (2012) Kaminer et al, Phys. Rev. Lett. 108, (2012)

More rigourous theory also supports our results

The temporal profile is preserved on the caustic 17 F. Courvoisier, ICAM fs pulse propagating along a circle The pulse is preserved in the diffraction-free domain.

Beams are generated from the Fourier space Fourier space shaping 18 F. Courvoisier, ICAM 2013 A/ cw, 632 nm B/ 100 fs, 800 nm D. Chremmos et al, Phys. Rev. A 85, (2012) Mathis et al, Opt. Lett., 38, 2218 (2013)

Beams are generated from the Fourier space Debye-Wolf integral is used to accurately describe the microscope objective and the precise mapping of the Fourier frequencies. Fourier space shaping 19 F. Courvoisier, ICAM 2013 Leutenegger et al Opt. Express 14, (2006) Mathis et al, Opt. Lett., 38, 2218 (2013) A/ cw, 632 nm B/ 100 fs, 800 nm

Arbitrary accelerating beams-nonparaxial regime 20 F. Courvoisier, ICAM 2013 Bending over more than 95 degrees. Numerical results are obtained from Debye integral and plane wave spectrum method. The phase masks that we can calculate analytically (circular and Weber beams) are the same as those obtained from Maxwell’s equations. Numeric Experiment Mathis et al, Opt. Lett., 38, 2218 (2013) Aleahmad et al Phys. Rev. Lett. 109, (2012). P. Zhang et al Phys. Rev. Lett. 109, (2012).

Arbitrary accelerating beams-nonparaxial regime An excellent agreement is then found with the target trajectories 21 F. Courvoisier, ICAM 2013 Mathis et al, Opt. Lett., 38, 2218 (2013)

Periodically modulated accelerating beams Each Fourier frequency corresponds to a single point on the caustic trajectory. 22 F. Courvoisier, ICAM 2013 M Mathis et al, Opt. Lett., 38, 2218 (2013)

Periodically modulated accelerating beams Each Fourier frequency corresponds to a single point on the caustic trajectory. An additional amplitude modulation is performed by multiplying the phase mask by a binary function and Fourier filtering of zeroth order. 23 F. Courvoisier, ICAM 2013 M phase

Periodically modulated accelerating beams Additional amplitude modulation allows us to generate periodic beams from arbitrary trajectories. 24 F. Courvoisier, ICAM 2013 Periodic Circular beam Periodic Weber (parabolic) beam Mathis et al, Opt. Lett., 38, 2218 (2013)

Spherical light 25 F. Courvoisier, ICAM 2013 Half-sphere with 50 µm radius Alonso and Bandres, Opt. Lett. 37, 5175 (2012) Mathis et al, Opt. Lett., 38, 2218 (2013)

Spherical light 26 F. Courvoisier, ICAM 2013 Mathis et al, Opt. Lett., 38, 2218 (2013)

Application-laser machining Beam profile 27 F. Courvoisier, ICAM 2013 Propagation Beam cross section 3D 50% Transverse distance (µm) Mathis et al, Appl. Phys. Lett. 101, (2012)

Edge profiling – 3D processing concept 28 F. Courvoisier, ICAM 2013

Edge profiling – 3D processing concept 29 F. Courvoisier, ICAM 2013

Results on silicon 100 µm thick silicon slide initially cut squared 30 F. Courvoisier, ICAM 2013 Mathis et al, Appl. Phys. Lett. 101, (2012) R=120 µm 100 µm

Results on silicon – quartic profile 31 F. Courvoisier, ICAM 2013 Mathis et al, Appl. Phys. Lett. 101, (2012) R=120 µm 100 µm

It also works for transparent materials – diamond 32 F. Courvoisier, ICAM 2013 Mathis et al, Appl. Phys. Lett. 101, (2012) 50 µm R=120 µmR=70 µm 100 µm

Direct trench machining in silicon Debris distribution is highly asymmetric. 33 F. Courvoisier, ICAM 2013 Mathis et al, Appl. Phys. Lett. 101, (2012) Mathis et al, JEOS:RP, (2013)

Analysis in terms of light propagation direction Surface trench opening determines the depth of the trench 34 F. Courvoisier, ICAM 2013 Intensity on top surface

Nonparaxial Debye–Wolf wave diffraction theory allows the design and experimental generation of arbitrary nonparaxial beams over arc angles exceeding 90°. Excellent agreement is found between experimental results and target trajectories. Additional amplitude modulation yields high contrast periodic accelerating beams. 3D half-spherical fields have been reported. Conclusions 35 F. Courvoisier, ICAM 2013 We have developed a novel application of accelerating beams, ie curved edge profiling.