Detection of X-ray resonant scattering in active stellar coronae Paola Testa 1,2, J.J. Drake 2, G. Peres 1, E.E. DeLuca 2 1 University of Palermo 2 Harvard-Smithsonian.

Slides:



Advertisements
Similar presentations
L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
Advertisements

Physical characteristics of selected X-ray events observed with SphinX spectrophotometer B. Sylwester, J. Sylwester, M. Siarkowski Space Research Centre,
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
General Properties Absolute visual magnitude M V = 4.83 Central temperature = 15 million 0 K X = 0.73, Y = 0.25, Z = 0.02 Initial abundances: Age: ~ 4.52.
Estimating the Chromospheric Absorption of Transition Region Moss Emission Bart De Pontieu, Viggo H. Hansteen, Scott W. McIntosh, Spiros Patsourakos.
Astrophysical Priorities for Accurate X-ray Spectroscopic Diagnostics Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics In Collaboration.
Detailed Plasma and Fluorescence Diagnostics of a Stellar X-Ray Flare Paola Testa (1) Fabio Reale (2), Jeremy Drake (3), Barbara Ercolano (3), David Huenemoerder.
Line Shapes in Hot Stars: Hydrodynamics & Wind Mass-Loss Rates David Cohen Swarthmore College with Maurice Leutenegger, Stan Owocki, Rich Townsend, Emma.
COOL STARS and ATOMIC PHYSICS Andrea Dupree Harvard-Smithsonian CfA 7 Aug High Accuracy Atomic Physics In Astronomy.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Ionization, Resonance excitation, fluorescence, and lasers The ground state of an atom is the state where all electrons are in the lowest available energy.
I. Balestra, P.T., S. Ettori, P. Rosati, S. Borgani, V. Mainieri, M. Viola, C. Norman Galaxies and Structures through Cosmic Times - Venice, March 2006.
X-ray Absorption Spectroscopy of the Multi-Phase Interstellar Medium: O & Ne Abundances Astro-ph: Yangsen Yao Q.Daniel Wang.
NGC 2110 Spectroscopy Dan Evans (Harvard), Julia Lee (Harvard), Jane Turner (UMBC/GSFC), Kim Weaver (GSFC), Herman Marshall (MIT)
Neon, Opacity the Universe and Everything Jeremy Drake Smithsonian Astrophysical Observatory 2004: The “solar model problem” 2005: Neon in late-type stars.
Coronal Hard X-rays Come of Age H. S. Hudson SSL, UC Berkeley.
The Sun The Sun in X-rays over several years The Sun is a star: a shining ball of gas powered by nuclear fusion. Luminosity of Sun = 4 x erg/s =
Institute for Astronomy and Astrophysics, University of Tübingen, Germany July 5, 2004Cool Stars, Stellar Systems and the Sun (Hamburg, Germany)1 Turning.
Detection of FIP Effect on Late-type Giants D. Garcia-Alvarez, J.J. Drake, L.Lin, V. Kashyap and B.Ball Smithsonian Astrophysical Observatory Coronal Abundances.
Cambridge, July 11, 2007 X-Ray Spectroscopy of Cool Stars From Coronal Heating to Accretion Manuel Güdel Paul Scherrer Institut, Switzerland Max-Planck-Institute.
X-ray Spectroscopy of Laboratory and Astrophysical Plasmas David Cohen Department of Physics and Astronomy Swarthmore College
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
A New View of Accretion Shock Structure Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Collaborators: Steve Cranmer, Andrea Dupree, Juan.
July 11 X-Ray Gratings Workshop Capella Grating Data and the Emission Line Project - An Update Priya Desai (CfA) Nancy Brickhouse Jeremy Drake Dave Huenenmoerder.
Resonance scattering in the X-ray emission line profiles of  Pup Maurice Leutenegger With David Cohen, Steve Kahn, Stan Owocki, and Frits Paerels.
December in Antarctica: The Sun never sets. The images are 1 hour apart.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Magnetic mapping of solar-type stars Pascal Petit figure: © M. Jardine.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Accretion Phenomena in Accreting Neutron Stars From atol to Z-sources Norbert S. Schulz, L. Ji, M. Nowak Claude R. Canizares MIT Kavli Institute for Astrophysics.
X-ray spectroscopy Workshop – Cambridge (MA, U.S.A.) - Thursday, July 12 th 2007 On the origin of soft X-rays in obscured AGN Stefano Bianchi Matteo Guainazzi.
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
High-Resolution X-ray Spectroscopy of the Accreting Weak-Line T Tauri Star DoAr 21 Victoria Swisher, Eric L. N. Jensen, David H. Cohen (Swarthmore College),
The Warm-hot Gaseous Halo of the Milky Way Smita Mathur The Ohio State University With Anjali Gupta, Yair Krongold, Fabrizio Nicastro, M. Galeazzi.
Diagnosing the Shock from Accretion onto a Young Star Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Collaborators: Steve Cranmer, Moritz.
Pinpointing a stellar X-ray flare using XMM-Newton and VLT/UVES Uwe Wolter Hamburger Sternwarte May 2008 J.U. Ness J. Robrade J.H.M.M. Schmitt.
Collisional Ionization and Doppler Lines in the Ultra-compact Binary 4U years or X-ray Binaries, Chandra Workshop, July 10-12, 2012, Boston MA.
X-ray flare on the single giant HR 9024 David Garcia-Alvarez (CfA) David Huenemoerder (MIT) Jeremy Drake (CfA) Fabio Reale (Univ. Palermo) Paola Testa.
Structuring of stellar coronae Dip.Scienze Fisiche e Astronomiche - June 23 rd 2004 Paola Testa Supervisor: G. Peres 1 Collaborations: J.J. Drake 2, E.E.
POST CME EVENTS: COOL JETS AND CURRENT SHEET EVOLUTION A. Bemporad, G. Poletto, S. T. Suess IAU Symposium 226 Coronal and Stellar Mass Ejections September.
X-rays in cool stars From present challenges to future observations Marc Audard ISDC & Observatoire de Genève Marc Audard ISDC & Observatoire de Genève.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Coronal loops: new insights from EIS observations G. Del Zanna 1,2, S. Bradshaw 3, 1 MSSL, University College London, UK 2 DAMTP, University of Cambridge,
1 X-ray Diagnostics of Physical Conditions in Warm Absorbers Y. Krongold (UNAM) N. Brickhouse (CfA) M. Elvis (CfA) F. Nicastro (CfA) S. Mathur (Ohio State.
X - R AY D IAGNOSTICS of G RAIN D EPLETION in M ATTER A CCRETING onto T T AURI S TARS Jeremy Drake (SAO), Paola Testa (MIT), Lee Hartman (SAO) Ne/O D IAGNOSTICS.
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
Lecture 8 Optical depth.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Direct Spatial Association of an X-Ray Flare with the Eruption of a Solar Quiescent Filament Gordon D. Holman and Adi Foord (2015) Solar Seminar on July.
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
Emission Measure Distributions: A Tutorial Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics From Spectral Lines to Emission Measures Emission.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
William Peterson & Robert Mutel University of Iowa Miller Goss NRAO M. Gudel ETH, Zurich 1.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Physics of Solar Flares
Emission measure distribution from plasma modeling
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Rotationally modulated X-ray emission from the accretion shock in CTTS
Chandra HETG Spectra of SN 1987A at 20 Years
MODELS OF EMISSION LINE PROFILES AND SPECTRAL ENERGY DISTRIBUTIONS
The Universe in High-resolution X-ray Spectra
Atmospheres of Cool Stars
High-cadence Radio Observations of an EIT Wave
A NEW TECHNIQUE FOR DERIVING PROMINENCE MASS FROM SOHO/EIT Fe XII (19
Two-component interpretation of solar & stellar coronal plasma differential emission measure (DEM) distributions by Tetsuya Watanabe (NAOJ) 12-JUL-2002.
Presentation transcript:

Detection of X-ray resonant scattering in active stellar coronae Paola Testa 1,2, J.J. Drake 2, G. Peres 1, E.E. DeLuca 2 1 University of Palermo 2 Harvard-Smithsonian CfA Cool Stars 13 th Workshop - Hamburg, July 5 th 2004

RATIONALE GENERAL PROBLEM : which is the structure of stellar coronae? DIAGNOSTIC TOOLS to understand STRUCTURING : eclipse and rotational modulation, flares analysis, density measurements, optical depth, etc ANALYSIS of Ly  /Ly  in ACTIVE STARS : detection of resonant scattering ESTIMATE the SIZE of CORONAL STRUCTURES IMPLICATIONS on CHARACTERISTICS of STRUCTURING

smallest observed scale (~700Km) Structuring of stellar coronae Solar Corona : Hierarchy of structures Whole star Active regions Loops

Structuring of stellar coronae Stellar Coronae : eclipse and rotational modulation, evolution during flares, density measurements, optical depth, etc, all provide information on scale height and location of active regions e.g. Brickhouse et al. (2001) : X-ray Doppler imaging of 44Boo Schmitt & Favata (1999) : flare analysis + eclipse mapping for Algol emitting plasma localized at high latitude, and rather compact (H  0.5 R  ) but also alternative interpretations of rotational broadening in terms of extended loops; e.g. Chung et al. (2004), Redfield et al. (2003)

Structuring of stellar coronae Stellar Coronae : how are very active stars structured? needs for larger volumes and/or higher densities can simple hydrostatic loop models ( e.g. RTV - Rosner, Tucker & Vaiana, 1978 ) explain the emission from active stars?

 Analysis of Stellar Emission: Ness et al. (2003) analysis of large survey of stellar spectra no clear evidence of resonant scattering from Fe lines Ness et al. (2003)  Study of SOLAR STRUCTURES: Controversial results from the analysis of FeXVII resonance line at ~15.03Å: e.g. Phillips et al. (1996), Schmelz et al. (1997), Saba et al. (1999) discrepancy in the derived direction and magnitude of the center-to-limb trend Structuring of stellar coronae Optical depth as diagnostics for structuring :  ~ 1.16· · f M 1/2 (n H /n e ) A Z (n ion /n el ) n e l

Effectiveness of diagnostics  Patterns of abundances in active stars: Audard (2003), Drake (2003), show that Fe is underabundant and Ne, O are overabundant in active stars Diagnostics from FeXVII lines:  Atomic physics: Doron & Behar (2002), Gu (2003) show the relevance of radiative recombination, dielectronic recombination and resonance excitation for interpreting the relative strength of FeXVII-FeXX lines Optical Depth Analysis

(Testa et al. 2004, ApJL, 609 L79) Analysis of Ly  /Ly  in HETGS- Chandra spectra of active stars Optical Depth Analysis D etection of X-ray resonant scattering

Escape probability assumption of homogeneity: both emission and absorption occur over the whole l.o.s. through the corona p(  ) ~ 1 / (  ) (Kastner & Kastner, 1990; Kaastra & Mewe, 1995) Optical Depth Analysis Path Length Estimate l   R  l  ~ 10 L RTV ·10 8 ~ 8Ne X [MEG] ·10 8 ~ 6Ne X [HEG] ·10 10 ~ 8O VIIIIM Peg ·10 10 ~ 10O VIIIII Peg l  / R  l  (cm) l  / L RTV a IonSource a Loop length from RTV scaling laws L RTV ~ T 3 / [( 1.4 ·10 3 ) 3 p ]

Conclusions first spectroscopic estimate of sizes of emitting structures in stellar coronae detection of resonant scattering implies non-uniform spatial distribution of the coronal plasma estimated characteristic lengths  R  most of all for hotter plasma, and ~10 L RTV both for hot and cool plasma results consistent with other findings of compact structures as inferred from several flares and eclipse analyses general scenario of coexisting classes of coronal structures: remarkably compact structures especially at higher temperatures

Structuring of stellar coronae Optical depth as diagnostics for structuring :  =  n l  = (  e 2 /mc) f (M/2kT) 1/2 (1/  ) 1/2 n = (n H /n e ) A Z (n ion /n el ) n e  ~ 1.16· · f M 1/2 (n H /n e ) A Z (n ion /n el ) n e l