CHEMISTRY 1000 Nuclear Chemistry.

Slides:



Advertisements
Similar presentations
My Chapter 29 Lecture.
Advertisements

Nuclear Chemistry Unit 22 Nuclear Chemistry Dr. Jorge L. Alonso Miami-Dade College – Kendall Campus Miami, FL Textbook Reference: Chapter # 26 Module (None)
NUCLEAR CHEMISTRY By: Stephanie Chen and Stephanie Ng.
Chapter 30 Nuclear Physics
RADIOACTIVE DECAY NCCS 1.1.4
Mini Quiz- Half Sheet H = 1.01 g/mol, O = g/mol S = g/mol, N = g/mol, I = g/mol 1.How many grams in 3.4 x molecules of H.
NUCLEAR CHEMISTRY. The Isotopic Symbol nucleons  Remember that the nucleus is comprised of the two nucleons, protons(p) and neutrons(n). atomic number.
CHEMISTRY 1000 Topic #4: Nuclear Chemistry Fall 2010 Dr. Susan Lait.
Chapter 24 : Nuclear Reactions and Their Applications 24.1 Radioactive Decay and Nuclear Stability 24.2 The Kinetics of Radioactive Decay 24.3 Nuclear.
Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number.
Introduction to Nuclear Chemistry. © 2009, Prentice-Hall, Inc. The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons.
19.1Nuclear Stability and Radioactive Decay 19.2 The Kinetics of Radioactive Decay 19.3 Nuclear Transformations 19.4Detection and Uses of Radioactivity.
Nuclear Physics Properties of Nuclei Binding Energy Radioactivity.
Nuclear Chemistry Chemistry I – Chapter 25
Nuclear Physics Physics 12. Protons, Neutrons and Electrons  The atom is composed of three subatomic particles: Particle Charge (in C) Symbol Mass (in.
Nuclear Chemistry.
Nuclear Chemistry.
NUCLEAR CHEMISTRY 2F-1 (of 15) NUCLEONS – The particles found in the nucleus Protons (+) Neutrons (0) ATOMIC NUMBER (Z) – The number of protons in the.
The Nucleus and Radioactivity
Chapter 21 Nuclear Chemistry John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
Chapter 21 Nuclear Chemistry
Alpha, Beta, and Gamma Decay
CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Spring 2013 Dr. Susan Findlay.
 Remember that the nucleus is comprised of the two nucleons, protons and neutrons.  The number of protons is the atomic number.  The number of protons.
1 Chapter 22 - Nuclear Chemistry 2 3 Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the.
Structure of the Nucleus Every atom has a nucleus, a tiny but massive center.Every atom has a nucleus, a tiny but massive center. The nucleus is made up.
Nuclear Chemistry Introduction Isotopes
1 Nuclear Chemistry 2 Be able to define the new words. Discuss the processes of radioactivity and radioactive decay. Characterize alpha, beta, and gamma.
1 Nuclear Chemistry Chemistry IH – Chapter 25 Chemistry I – Chapter 21.
Nuclear Chemistry In a chemical reaction, the valence electrons are important. But the nuclei of elements may undergo changes as well. When the nuclei.
Ch. 24--Nuclear Chemistry “It’s all about the nucleus!”
Atomic Stability. Isotopes Isotopes are atoms of an element that have different numbers of neutrons in their nucleus. Cu Copper – 63 OR Copper.
Chapter 21 Nuclear Chemistry. The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the.
Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom.
Nuclear Chemistry , Nuclear Chemistry The study of the properties and reactions of atomic nuclei Atoms with identical atomic numbers.
Radioactivity.
Protons and neutrons are called nucleons. An atom is referred to as a nuclide. An atom is identified by the number of protons and neutrons in its nucleus.
Chapter 21 Nuclear Chemistry John A. Schreifels Chemistry 212.
1 Nuclear Chemistry. 2   Respect individual differences (Unity in Diversity)   Do unto others what you want others to do unto you.   Do what is.
Radioactive Nuclide Nuclide which is unstable. It emits radiation & changes into another kind of atom.
Radioactivity Radioactivity is the spontaneous
The Structure of the Atom Radioactivity. –Spontaneous emission of radiation by certain atoms –The structure of atomic nuclei and the changes they undergo.
Nuclear Chemistry. Chemical ReactionsNuclear Reactions - Occur when bonds are broken or formed -Occur when the nucleus emits particles or rays -Atoms.
Nuclear Chemistry. Radioactivity The process by which materials give off such rays radioactivity; the rays and particles emitted by a radioactive source.
Alpha and Beta Decay. Nuclear Reactions 1.Occur when nuclei emit particles and/or rays. 2.Atoms are often converted into atoms of another element. 3.May.
Nuclear Chemistry Unit 4. History Wilhelm Conrad Roentgen ( ) Wilhelm Conrad Roentgen ( ) Awarded a Nobel Prize in Physics in 1901 Awarded.
Section 19.1 Radioactivity TYPES OF RADIOACTIVE DECAY EQ.: WHAT ARE THE DIFFERENT TYPES OF RADIOACTIVE DECAY AND HOW ARE THESE REPRESENTED IN A NUCLEAR.
Energy Unit Learning Goal 4: Examine how changes in the nucleus of an atom result in emissions of radioactivity.
Chapter 18 The Nucleus. Cool Nuclear Facts Nucleus has a density of 1.6x10 14 g/cm 3 Nuclear material the size of a ping pong ball would be 2.5 billion.
Chapter 19 The Nucleus: A Chemist’s View AP*. AP Learning Objectives  LO 4.3 The student is able to connect the half-life of a reaction to the rate constant.
NUCLEAR CHEMISTRY. Atomic Structure Recall: Atoms – consist of a positively charged nucleus, which has protons and neutrons. IsotopeSymbol# protons# neutronsAtomic.
Chapter 21 Nuclear Chemistry. © 2009, Prentice-Hall, Inc. The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons.
Nuclear, i.e. pertaining to the nucleus. Nucleus Most nuclei contain p + and n 0 When packed closely together, there are strong attractive forces (nuclear.
1 Nuclear Chemistry 2 Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie.
Chapter 10 Nuclear Decay. Objectives 〉 What happens when an element undergoes radioactive decay? 〉 How does radiation affect the nucleus of an unstable.
11 ELECTROMAGNETIC RADIATION. 22 EM RADIATION II ALSO CALLED RADIANT ENERGY ONLY A PORTION IS CALLED LIGHT TRAVELS IN WAVES TRAVELS THROUGH SPACE (VACUUM)
Nuclear physics And you……... What happens when: The nucleus of an atom gets larger and larger? Is there a finite limit to just how big it can be? Well.
Nuclear Chemistry The alpha particle (  ) The beta particle (  ) Gamma radiation (γ)
CHAPTER FIVE(23) Nuclear Chemistry. Chapter 5 / Nuclear Chemistry Chapter Five Contains: 5.1 The Nature of Nuclear Reactions 5.2 Nuclear Stability 5.3.
Chapter 21 Nuclear Chemistry
E ISOTOPES, NUCLIDES protons, p neutrons, n
Aim: What is Nuclear Chemistry
Radioactivity Nuclei that are unstable decay; many such decays are governed by another force called the weak nuclear force. Radioactive rays were observed.
Nuclear Chemistry Chapter 25.
Nuclear Chemistry.
Presentation transcript:

CHEMISTRY 1000 Nuclear Chemistry

Radioactivity and Radiation Nuclear reactions result in changing the nuclei of atoms. These reactions are accompanied by emission of ionizing radiation (which has enough energy to excite electrons out of molecules, ‘ionizing’ them). There are three main types of ionizing radiation: alpha rays (): helium nuclei (2 protons + 2 neutrons) beta rays (): electrons gamma rays (): high energy photons (higher energy than x-rays) which have no mass and no charge

Radioactivity and Radiation -particles can be stopped by paper. -particles require at least a cm of lead (Pb). -particles require at least 10 cm of lead (Pb). Neutrinos: zero charged particles even smaller than electrons. Energy:  >  > 

Measuring Radiation rad = radiation absorbed dose rem = radiation equivatlent for man Q = RBE (relative biological effectiveness) Sv = Gy x Q

Effects of Radiation Exposure (long term) Natural and Artificial Sources of Radiation.

Effects of Radiation (Short Term)

Calculating Radiation Dosage Example: Calculate the radiation dosage (in Sieverts) for a person weighing 68 kg that is exposed to 3.5×108 particles of alpha radiation. Assume that 89% of the radiation is absorbed and each alpha particle has an energy of 6.2×10-13 J, and that the RBE or Q of alpha particles is 15.

Short Term Exposure vs Long Term Exposure Safe dose for single exposure is much higher than safe dose for long term exposure Annual exposure to background radiation in Canada depends on location but typically about 3 mSv (=3000 µSv = 300 mrem) Legal limits to radiation exposure at work (50 mSv/year, 100 mSv over five year) Legal doses: LD50 for a single exposure 4 Sv LD50 for ongoing exposure is … http://www.hc-sc.gc.ca/hl-vs/iyh-vsv/environ/expos-eng.php

Nuclear Medicine: Imaging

Balancing Nuclear Reactions In any nuclear reaction, two things are conserved: The sum of the mass numbers of the products is equal to the sum of the mass numbers of the reactants. The sum of the atomic numbers of the products is equal to the sum of the atomic numbers of the reactants. The “atomic number” for an electron () is considered to be -1. The exact masses of products and reactants are not the same. The small mass difference between mass of products and reactants results in release of energy (E = mc2) and the law of conservation of energy still holds. (The law of conservation of mass is a special case of the law of conservation of energy.)

Balancing Nuclear Reactions Balance the following nuclear reactions.

Classes of Nuclear Reactions There are seven classes of nuclear reactions: Alpha emission Beta emission Positron emission Electron capture Fusion Fission Bombardment (to make transuranium elements)

Classes of Nuclear Reactions reactants products* ΔZ spontaneous? alpha emission 1 nucleus 1 nucleus + 1 alpha particle -2 yes beta emission 1 nucleus + 1 electron +1 positron emission 1 nucleus + 1 positron** -1 electron capture fission 2 nuclei + neutron(s) varies no fusion 2 light nuclei 1 nucleus + neutron(s) sometimes bombardment 2 heavy nuclei * Most nuclear reactions also emit electromagnetic radiation. Emitting an  or  particle leaves the nucleus in an excited state so it emits a photon as it returns to the nuclear ground state. The energy of the photon is specific to the nuclear reaction. ** As antimatter, positrons are not directly observable. A positron is annihilated as soon as it collides with an electron, releasing  radiation (a high energy photon).

Classes of Nuclear Reactions “nuclide” = a specific type of nucleus (i.e. containing a specific #protons and #neutrons) Classes of Nuclear Reactions An unstable nuclide undergoes spontaneous nuclear reaction to form a more stable nuclide. If this product is also unstable, it undergoes another nuclear reaction (and another and another, etc. until a stable nuclide is reached). Such a series of alpha- and beta-emissions is called a radioactive decay series:

Classes of Nuclear Reactions Some classes of nuclear reaction, on the other hand, will never occur spontaneously. Instead, they must be induced (often by hitting the nucleus with a neutron to generate a highly unstable nucleus which will then undergo the desired nuclear reaction). This is true of fission and bombardment:

Why Do Nuclear Reactions Occur? What factors affect stability of a particular nuclide? A nucleus consists of protons and neutrons held together by nuclear binding energy. At the same time, there is electrostatic repulsion between the positively-charged protons. If this repulsion is too great, the nucleus will be unstable. Neutrons lessen this repulsion by increasing the distance between protons; however, neutrons are inherently less stable than protons. Excess neutrons will decompose into proton/electron pairs. It is therefore possible to make a few generalizations: Nuclides containing more protons need more neutrons (to keep the protons apart). Nuclides containing fewer protons need fewer neutrons (to maximize stability). There is a maximum number of protons beyond which the nuclear binding energy cannot hold the nuclide together stably (because the electrostatic repulsion is too great).

Why Do Nuclear Reactions Occur? The number of stable nuclides is relatively small. Plotting #protons (Z) vs. #neutrons (N) for all nuclides that have been made/found gives a narrow band of stable nuclides (black dots) surrounded by a wider band of unstable nuclides (red dots). The stable nuclides form the band of stability. Nuclides farthest from the band of stability are least stable, decaying fastest. Heavy nuclides decay faster than light ones. N-to-Z ratio in stable nuclides is predictable: If Z = 1-20 (H to Ca), N  Z is ideal If Z = 20-83 (Sc to Bi), N > Z up to N  1.5 Z If Z  84 (Po and larger), no stable nuclides exist Even values for Z & N are conducive to stability. Almost 60% of stable nuclides have both even. Less than 2% of stable nuclides have both odd!

Why Do Nuclear Reactions Occur? The type of nuclear reaction which a nuclide is most likely to undergo can be predicted from its N-to-Z ratio. A nucleus which has “too many neutrons” (i.e. N/Z is too high) will tend to undergo beta emission. How does this improve N/Z? A small nucleus which has “too many protons” (i.e. N/Z is too low) will tend to undergo either positron emission or electron capture. How does this improve N/Z? A large nucleus which has “too many protons” (i.e. N/Z is too low) will tend to undergo alpha emission. How does this improve N/Z?

Nuclear Binding Energy When nucleons (protons and neutrons) come together to make a nucleus, energy is released. This energy is referred to as nuclear binding energy (E) and a nuclide’s nuclear binding energy can be calculated using Einstein’s famous equation: The nuclear binding energy for any nuclide can thus be calculated by comparing its mass to the total mass of the protons and neutrons it contains. You may have already noticed that atomic masses are not exactly equal to the sum of the masses of the protons, neutrons and electrons in the atom! In order for a nuclide to be stable, its nuclear binding energy must be greater than the electrostatic repulsion between its protons.

Nuclear Binding Energy Since they release more energy upon formation, nuclides with greater nuclear binding energies would at first seem to be more stable; however, we must also factor in the number of nucleons brought together. Otherwise, larger nuclides appear to be excessively stable are simply because they contain more nucleons. So, a more useful quantity to calculate is the nuclear binding energy per nucleon (Eb): where A = mass number = #nucleons = Z + N Nuclides with larger Eb values are more stable.

Nuclear Binding Energy Mproton = 1.0072765 g/mol Mneutron = 1.0086649 g/mol Melectron = 0.0005486 g/mol Nuclear Binding Energy Calculate Eb for the helium isotopes: 3He (3.016029310 g/mol) and 4He (4.002603250 g/mol). Which isotope is more stable? For this type of calculation, ALWAYS use the mass of the specific isotope or nuclide. NEVER use the average atomic mass listed on the periodic table

Nuclear Binding Energy 4He is one of the most stable nuclide. When Eb is plotted as a function of A, the most stable nuclide is found to be 56Fe: This plot also shows which nuclides can undergo fusion (increasing Eb by increasing A) and which nuclides can undergo fission (increasing Eb by decreasing A).

Nuclear Binding Energy Since a nuclear reaction involves conversion of one (or more) nucleus to another, it can be modeled as destruction of the original nucleus followed by creation of a new nucleus: So, we can calculate the energy released by any nuclear reaction as long as we know the masses of the nuclides involved. e.g. A neutron (1n, 1.0087 g/mol) strikes 235U (235.0439 g/mol) to give 138Xe (137.908 g/mol), 95Sr (94.913 g/mol) and 3 1n.

Rates of Radioactive Decay Activity (A) = Disintegrations/time = (k)(N) where N is the number of radioactive atoms k is decay constant (in s-1) and is characteristic of a particular decay. Activity can be measured using a Geiger counter or scintillation counter If there are N1 atoms before decay and N2 atoms after decay, then the number of disintegrations ΔN = N2-N1 during a time change of Δt = t2 - t1 So A = -ΔN/Δt = (k)(N)

Can We Find the Decay Constant by Graphing? From A = -ΔN/Δt = kN, if we can measure A and N in the lab, we can graph A vs. N to find k, as A = kN is a linear equation like y = ax. The slope of the line A vs. N would give k. What does this graph look like?

Can We Find the Decay Constant by Graphing? However, even if we can measure Δt and N in the lab, a graph of N vs. Δt would not be linear and therefore not useful in finding k, as N = (-ΔN/k)Δt is not a linear equation like y = ax, but a non-linear equation like y = a/x. What does this graph look like?

Fortunately, Radioactive Decay is a first-order reaction The rate of the reaction only depends on the “reactant” concentration.  

What Is the Half-Life of a Radioactive Decay?

Finding Half-Life from a Graph After each successive half-life, one half of the original amount remains.

Radiocarbon Dating Willard Libby (1908-1980) Libby received the 1960 Nobel Prize in chemistry for developing carbon-14 dating techniques. He is shown here with the apparatus he used. Carbon-14 dating is widely used in fields such as anthropology and archeology.

Radiocarbon Dating Radioactive 14C is formed in the upper atmosphere by nuclear reactions initiated by neutrons in cosmic radiation: 14N + 10n  14C + 1H The 14C is oxidized to CO2, which circulates through the biosphere. When a plant dies, the 14C is not replenished. But the 14C continues to decay with t1/2 = 5730 years. Activity of a sample can be used to date the sample.

Is There a Limit for Carbon-14 Dating?  

Transuranium Elements & Glenn Seaborg

Nuclear Fission

Nuclear Fission Fission chain reaction has three general steps: Initiation: Reaction of a single atom starts the chain (e.g., 235U + neutron) Propagation: 236U fission releases neutrons that initiate other fissions Termination: Consumption of the fissionable material is completed

Nuclear Fission & Lise Meitner 109Mt

Nuclear Fission & Power Currently about 103 nuclear power plants in the U.S. and about 435 worldwide. 17% of the world’s energy comes from nuclear reactions.