周 顺 中科院高能所理论室 JUNO中微子天文和天体物理学研讨会 北京,

Slides:



Advertisements
Similar presentations
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Advertisements

Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Physics Opportunities with
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Prospect for detection of supernova neutrino NOW2014 Sep. 9 th, 2014 Otranto, Lecce, Italy 森俊彰 Takaaki Mori for the Super-Kamiokande Collaboration Okayama.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
The neutrons detection involves the use of gadolinium which has the largest thermal neutron capture cross section ever observed. The neutron capture on.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
李玉峰 中科院高能所 JUNO中微子天文和天体物理学研讨会
CurrentYufengXin sin 2 2θ 12 4%0.7%0.5% Δm %0.6%0.4% Δm %0.4%0.3% Impacts on neutrinoless beta decay, future unitarity tests of PMNS matrix,
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
SUPERNOVA NEUTRINOS AT ICARUS
John Beacom, The Ohio State UniversityJinping Neutrino Workshop, Tsinghua University, June 2015 Supernova Burst and Relic Neutrinos 1 John Beacom, The.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
M. Selvi – SN detection with LVD – NNN‘06 Supernova  detection with LVD Marco Selvi – INFN Bologna, Large Volume LNGS.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Precise Cosmology from SNe Ia Wang Xiao-feng Physics Department and Tsinghua Center for Astrophysics, Tsinghua University 2005, 9, 22, Sino-French Dark.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    
Coincident search for gravitational-wave and neutrino signals from core-collapse supernovae L. Cadonati (U Mass, Amherst), E. Coccia (LNGS and U Rome II),
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
Application of neutrino spectrometry
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
GADZOOKS! Megaton Scale Neutron Detection Mark Vagins University of California, Irvine NNN05 - Aussios April 7, 2005.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
LIGO G Z Update on Neutrino/ Gravity Wave Correlations With a Focus on SNEWS LIGO-I By Ken Ganezer, CSUDH Elementary Particles and Relativity.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
RESCEU Symposium, University of Tokyo, November 2008John Beacom, The Ohio State University The Diffuse Supernova Neutrino Background John Beacom The Ohio.
Introduction of the JUNO experiment Yifang Wang Institute of High Energy Physics Shanghai, May 29, 2014.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Solar Neutrino Results from SNO
Diffuse SN Neutrino Background (DSNB) in liquid Argon Cecilia Lunardini Arizona State University.
Supernovae: BeyondDC-Phase 1 Some remarks on supernovae Detection principle – Absorption lengths – Effective volumes – Noise Supernova dynamics & fundamental.
Introduction of the JUNO Experiment Jun CAO Institute of High Energy Physics GDR neutrino 2014, LAL, Orsay, June 16, 2014.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Daya Bay-II Daya Bay-II A 60km-baseline Reactor Experiment and Beyond Jun Cao Institute of High Energy Physics.
Results on  13 Neutrino Oscillations from Reactor Experiments Soo-Bong Kim (KNRC, Seoul National University) “INPC 2013, Firenze, June 2-7, 2013”
Waseda univ. Yamada lab. D1 Chinami Kato
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Astrophysical Constraints on Secret Neutrino Interactions
Daya Bay II:the Next Generation Reactor Neutrino Experiment
Work on neutrino and dark matter experiments
Solar & Supernova Neutrinos Detection Methods and Prospects
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Contents of the Universe
Neutrinos as probes of ultra-high energy astrophysical phenomena
Neutrinos Oscillation Experiments at Reactors
The neutrino mass hierarchy and supernova n
Feasibility of geochemical galactic neutrino flux measurement
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Low Energy Neutrino Astrophysics
Presentation transcript:

周 顺 中科院高能所理论室 JUNO中微子天文和天体物理学研讨会 北京, 2015-7-10 江门实验探测超新星中微子 周 顺 中科院高能所理论室 JUNO中微子天文和天体物理学研讨会 北京, 2015-7-10

The JUNO Experiment Jiangmen Underground Neutrino Observatory (JUNO), a multiple-purpose neutrino experiment, approved in Feb. 2013, ~ 300 M$. 20 kton LS detector 3% energy resolution 700 m underground Rich Physics Possibilities Reactor Neutrinos for neutrino mass hierarchy & precision measurement of oscillation parameters Supernova Neutrino Burst Diffuse Supernova Neutrino Background Geoneutrinos Solar Neutrinos Atmospheric Neutrinos Proton Decays Exotic Searches Talks by Y.F. Wang at ICFA Seminar 2008, Neutel 2011; by J. Cao at Neutel 2009, NuTurn 2012, NeuTel 2015 ; Papers by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007,2009; Y.F. Li, J. Cao, Y.F. Wang, L. Zhan, PRD 88: 013008, 2013.

Location of JUNO by 2020: 26.6 GW Overburden ~ 700 m Daya Bay NPP Huizhou Lufeng Yangjiang Taishan Status Operational Planned Under construction Power 17.4 GW 18.4 GW Yangjiang NPP Taishan NPP Daya Bay NPP Huizhou NPP Lufeng NPP 53 km Hong Kong Macau Guang Zhou Shen Zhen Zhu Hai 2.5 h drive by 2020: 26.6 GW Previous site candidate Overburden ~ 700 m Kaiping, Jiangmen City, Guangdong Province

High-precision, Giant LS detector 20 kt LS Acrylic tank: F~35.4m Stainless Steel tank: F~39.0m ~1500 20” VETO PMTs coverage: ~77% ~18000 20” PMTs Muon tracker Steel Tank 5m ~6kt MO ~20 kt water JUNO 𝒎 𝟑 > 𝒎 𝟐 > 𝒎 𝟏 𝒎 𝟐 > 𝒎 𝟏 > 𝒎 𝟑 Prompt signal: 𝑒 + 𝑒 − ⟶2𝛾 𝝂 𝒆 +𝐩⟶𝒏+ 𝒆 + Delayed capture on H; 2.2 MeV γ KamLAND BOREXINO JUNO LS mass 1 kt 0.5 kt 20 kt Energy Resolution 6%/ 𝐄 5%/ 𝐄 3%/ 𝐄 Light yield 250 p.e./MeV 511 p.e./MeV 1200 p.e./MeV Run for 6 yrs Relative Absolute Δm2 Statistics 4σ 5σ Realistic 3σ

Galactic SN 1054 Distance: 6500 light years (2 kpc) Center: Neutron Star ( R~30 km) Progenitor : M ~ 10 solar masses Red:Optical (Hubble) Blue:X-Ray (Chandra)

Stellar Collapse and SN Explosion Grav. binding energy Eb3  1053 erg 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy Main-sequence star Hydrogen Burning Helium Burning Hydrogen Helium-burning star > 8 Solar Masses Collapse→Bounce Shock wave halted ν energy deposited Final SN explosion Degenerate iron core: r  109 g cm-3 T  1010 K MFe  1.5 Msun RFe  8000 km Proto-Neutron star: r ~ rnuc = 3  1014 g cm-3 T ~ 30 MeV

Why No Prompt Explosion? Dissociated Material (n, p, e, n) Collapsed Core Undissociated Iron Shock Wave 0.1 Msun of iron has a nuclear binding energy  1.7  1051 erg Comparable to explosion energy Shock wave forms within the iron core Dissipates its energy by dissociating the remaining layer of iron

Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982) Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982) Bethe & Wilson, ApJ 295 (1985) 14

Neutrinos to Rescue Neutrino heating increases pressure behind shock front Janka, astro-ph/0008432

Exploding Models (8–10 Solar Masses) Kitaura, Janka & Hillebrandt: “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae”, astro-ph/0512065

Supernova Delayed Explosion Scenario

Three Phases of Neutrino Emission Prompt ne burst Accretion Cooling 𝜈 𝑒 𝜈 𝑒 𝜈 𝑒 𝜈 𝑥 𝜈 𝑒 𝜈 𝑥 𝜈 𝑒 Shock breakout De-leptonization of outer core layers Shock stalls ~ 150 km Neutrinos powered by infalling matter Cooling on neutrino diffusion time scale Spherically symmetric model (10.8 M⊙) with Boltzmann neutrino transport Explosion manually triggered by enhanced CC interaction rate Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Livermore Fluxes and Spectra Schematic transport of nm and nt Incomplete microphysics Crude numerics to couple neutrino transport with hydro code Prompt 𝜈 𝑒 burst 𝜈 𝑥 𝜈 𝑒 𝜈 𝑒 Livermore numerical model ApJ 496 (1998) 216

Neutronization Burst as a Standard Candle Different Mass Neutrino Transport Nuclear EoS If mixing scenario is known, can determine SN distance (better than 5-10%) Kachelriess, Tomàs, Buras, Janka, Marek & Rampp, astro-ph/0412082

Supernova Neutrino Spectra Formation Electron flavor ( 𝝂 𝒆 and 𝝂 𝒆 ) Thermal Equilibrium 𝜈 𝑒 𝑝↔𝑛 𝑒 + 𝜈 𝑒 𝑛↔𝑝 𝑒 − Free streaming Tflux~ TNS Tflux~ 0.6TES Neutrino sphere (TNS) Other flavors ( 𝝂 𝝁 , 𝝂 𝝁 , 𝝂 𝝉 , 𝝂 𝝉 ) Free streaming Diffusion Scattering Atmosphere 𝜈𝑁→𝑁𝜈 𝜈𝑁↔𝑁𝜈 𝜈𝑒↔𝜈𝑒 𝑁𝑁↔𝑁𝑁𝜈 𝜈 𝑒 + 𝑒 − ↔𝜈 𝜈 𝜈 𝑒 𝜈 𝑒 ↔ 𝜈 𝜇 𝜈 𝜇 Energy sphere (TES) Transport sphere Raffelt (astro-ph/0105250), Keil, Raffelt & Janka (astro-ph/0208035)

Keil, Raffelt & Janka, astro-ph/0208035 Parametrizations of Neutrino Spectra Keil, Raffelt & Janka, astro-ph/0208035 Fermi-Dirac Modified MB MB MB

Explosion Mechanism:Neutrino-driven Explosion The prompt shock halted at 150 km, by disintegrating heavy nuclei Neutrinos deposit their energies via interaction with matter; 1 % neutrino energy leads to successful explosion Simulations in 1D & 2D for different progenitor masses observe explosions 3D simulation has just begun; but no clear picture (resolution, progenitors) for a review, Janka, 1211.1378

Large Magellanic Cloud SN 1987A Supernova 1987A 23 February 1987 Sanduleak - 69 202 Large Magellanic Cloud SN 1987A Distance:165 000 light yrs (50 kpc) Center:Neutron Star (expected, but not found) Progenitor: M ~ 18 solar masses

Supernova Neutrinos: SN 1987A Arnett et al., ARAA 27 (1989) Hirata et al., PRD 38 (1988) 448

Supernova Neutrinos: SN 1987A Kamiokande-II (Japan): Water Cherenkov (2,140 ton) Clock Uncertainty ± 1 min Irvine-Michigan-Brookhaven (US): Water Cherenkov (6,800 ton) Clock Uncertainty ±50 ms Baksan LST (Soviet Union): Liquid Scintillator (200 ton) Clock Uncertainty +2/-54 s Mont Blanc: 5 events, 5 h earlier

Jegerlehner, Neubig & Raffelt Supernova Neutrinos: SN 1987A Assumptions: Thermal Equipart. Jegerlehner, Neubig & Raffelt astro-ph/9601111 Conclusions: Collapse Ave.Ener. Duration Eb [1053 ergs] Problems: 24 events by chance Spectral anti-νe Temperature [MeV]

SN  Detection: present and future experiments MiniBooNE (200) LVD (400) Borexino (100) Baksan (100) Super-Kamiokande (104) KamLAND (400) SN @10 kpc Daya Bay (100) JUNO (104) Water/Ice Cherenkov Liquid Scintillator IceCube (106)

Key Problem: where and when? © Raffelt (1) Estimate from SN statistics in other galaxies; (2) Only massive stars produce 26Al (with a half-life 7.2  105 years); (3) Historical SNe in the Milky Way; (4) No neutrino bursts observed by Baksan since June 1980

Key Problem: where and when?

SN Candidate: The Red Supergiant Betelgeuse (Alpha Orionis) Distance: 642 ly (197 pc) Type:Red Supergiant Mass:~ 18 solar masses Expected to end its life as SN explosion @ JUNO: 2 107 events

Burning Phases of a 15 Solar-Mass Star Pre-SN Neutrinos Burning Phases of a 15 Solar-Mass Star Hydrogen 3 - 2.1 5.9 1.2 107 Duration [years] Lν/Lγ ρc [g/cm3] Tc [keV] Burning Phase Lγ [104 Lsun] Helium 14 1.7 10-5 6.0 1.3103 1.3 106 Carbon 53 1.7105 8.6 1.0 6.3 103 Neon 110 1.6107 9.6 1.8 103 7.0 Oxygen 160 9.7107 9.6 2.1 104 1.7 Silicon 270 2.3108 9.6 9.2 105 6 days Detection of 𝝂 𝒆 a massive star before SN explosion For M = 20 solar masses, D = 0.2 kpc (Betelgeuse), and in the energy range 1 MeV < Eν < 2.6 MeV per day Reactor Geo. Pre-SN # of events 3 0.1 10 Gang Guo’s talk

Galactic SN Neutrinos See, Janka, 1211.1378 Detect 𝝂 𝒆 , 𝝂 𝒆 , 𝝂 𝒙 from a galactic SN @ 10 kpc real-time meas. of three-phase ν signals distinguish between different ν flavors reconstruct ν energies and luminosities almost background free due to time info

Detection of SN Neutrinos at JUNO Spectra 𝐈𝐧𝐯𝐞𝐫𝐬𝐞 𝐛𝐞𝐭𝐚 𝐝𝐞𝐜𝐚𝐲 𝐈𝐁𝐃 𝝂 𝒆 +𝐩⟶𝒏+ 𝒆 + 𝝂 𝒆 Precision of 1% Delayed signal: 𝟐.𝟐 𝐌𝐞𝐕 𝜸 Prompt signal:𝟐𝜸 p 𝒆 − 𝒏 𝒆 + p 5000 IBD events, golden channel for SN neutrino observations Coincidence of prompt and delayed signals: least background Dominant channel for electron anti-ν, good reconstruction of Eν

Detection of SN Neutrinos at JUNO 𝐄𝐥𝐚𝐬𝐭𝐢𝐜 𝛎−𝒑 𝐒𝐜𝐚𝐭𝐭𝐞𝐫𝐢𝐧𝐠 𝐩𝐄𝐒 𝝂 +𝒑⟶𝝂+𝒑 𝝂 𝐄𝐥𝐚𝐬𝐭𝐢𝐜 𝛎−𝒆 𝐒𝐜𝐚𝐭𝐭𝐞𝐫𝐢𝐧𝐠 𝐞𝐄𝐒 𝝂 𝒆 +𝒆⟶ 𝝂 𝒆 +𝒆 𝝂 p recoil energy 2000 pES events, dominant channel for muon & tau neutrinos Low threshold for visible energy: nominal value = 0.2 MeV reconstruction of neutrino energy spectrum: high-energy tail

Detection of SN Neutrinos at JUNO Impact of neutrino flavor conversions

Detection of SN Neutrinos at JUNO Global analysis of all channels

Neutrino Mass Bound @ JUNO Time delay of massive neutrinos Jia-Shu Lu’s talk 3000 simulations for JUNO J.S. Lu et al., JCAP 15’, 1412.7418

Beacom & Vogel, astro-ph/9811350 Locating a galactic SN @ 10 kpc Galactic SN Neutrinos For Optical Observations:SuperNova Early Warning System (SNEWS) Zhe Wang’s talk Tomàs et al., hep-ph/0307050 Beacom & Vogel, astro-ph/9811350 http://snews.bnl.gov/ Daya Bay Super-K IceCube n-tagging efficiency 95% CL half-cone opening angle LVD Borexino None 90 % Neutrinos arrive several hours before photons; to alert astronomers several hours in advance 7.8° 3.2° SK Alert @BNL Locating a galactic SN @ 10 kpc Stat. recon. e+-n correlation: 8.1°@JUNO

Diffuse Supernova Neutrino Background (DSNB) • Approx. 10 core collapses/sec in the visible universe • Emitted 𝜈 energy density ~ extra galactic background light ~ 10% of CMB density • Detectable 𝜈 𝑒 flux at Earth ∼10 cm −2 s −1 mostly from redshift 𝑧∼1 • Confirm star-formation rate • Nu emission from average core collapse & black-hole formation • Pushing frontiers of neutrino astronomy to cosmic distances! Beacom & Vagins, PRL 93:171101,2004 Window of opportunity between reactor 𝜈 𝑒 and atmospheric 𝜈 bkg

Redshift Dependence of Cosmic Supernova Rate Core-collapse rate depending on redshift Relative rate of type Ia Horiuchi, Beacom & Dwek, arXiv:0812.3157v3

Realistic DSNB Estimate Horiuchi, Beacom & Dwek, arXiv:0812.3157v3

Neutron Tagging in Super-K with Gadolinium Background suppression: Neutron tagging in 𝜈 𝑒 +𝑝→𝑛+ 𝑒 + • Scintillator detectors: Low threshold for g(2.2 MeV) • Water Cherenkov: Dissolve Gd as neutron trap (8 MeV g cascade) • Need 100 tons Gd for Super-K (50 kt water) EGADS test facility at Kamioka • Construction 2009–11 • Experimental program 2011–2013 Mark Vagins Neutrino 2010 Selective water & Gd filtration system 200 ton water tank Transparency measurement

Average spectral properties from DSNB 90% CL sensitivity to average SN spectrum from DSNB after 5 years of Gd enhanced Super-K Adapted from Yüksel, Ando & Beacom, astro-ph/0509297

Neutrinos from all the SNe in our Universe Diffuse SN Background (DSNB) Neutrinos from all the SNe in our Universe # of SNe per yr per Mpc3(un. SFR, IMF) Cosmological evolution ν spectrum 90% CL exclusion curves (the upper-right regions) if no detection for 10 yrs Observation window: 11 MeV < Eν < 30 MeV PSD techniques for NC atmospheric ν Fast neutrons: r < 16.8 m (equiv. 17 kt mass) ⋆

Summary and Outlook Neutrinos from next nearby supernova cannot be missed (a once-in-a-lifetime opportunity!) Physics opportunities with SN neutrinos: stellar collapse, explosion mechanism, collective flavor conversion, matter effects, neutrino mass ordering, absolute neutrino mass,… 104 neutrino events @ JUNO for a typical galactic SN; to improve neutrino mass bound, reconstruct neutrino spectra; A lot of theoretical works to do while waiting for a real SN