Chapter 7 Estimation: Single Population

Slides:



Advertisements
Similar presentations
Ch. 8: Confidence Interval Estimation
Advertisements

Chapter 6 Sampling and Sampling Distributions
Sampling: Final and Initial Sample Size Determination
POINT ESTIMATION AND INTERVAL ESTIMATION
Chap 8-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 8 Estimation: Single Population Statistics for Business and Economics.
Chapter 8 Estimating Single Population Parameters
Chapter 8 Estimation: Additional Topics
Mathematics & Statistics
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 10 th Edition.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Introduction to Statistics: Chapter 8 Estimation.
Chapter 17 Additional Topics in Sampling
1 Business 90: Business Statistics Professor David Mease Sec 03, T R 7:30-8:45AM BBC 204 Lecture 22 = More of Chapter “Confidence Interval Estimation”
1 Business 90: Business Statistics Professor David Mease Sec 03, T R 7:30-8:45AM BBC 204 Lecture 21 = Start Chapter “Confidence Interval Estimation” (CIE)
Chapter 8 Estimation: Single Population
Chapter 7 Estimation: Single Population
8-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 8 Confidence Interval Estimation Statistics for Managers using Microsoft.
Copyright ©2011 Pearson Education 8-1 Chapter 8 Confidence Interval Estimation Statistics for Managers using Microsoft Excel 6 th Global Edition.
© 2004 Prentice-Hall, Inc.Chap 8-1 Basic Business Statistics (9 th Edition) Chapter 8 Confidence Interval Estimation.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics, A First Course.
Chapter 6 Sampling and Sampling Distributions
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Chapter 7 Confidence Intervals and Sample Sizes
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Confidence Interval Estimation
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 11 th Edition.
Confidence Intervals (Chapter 8) Confidence Intervals for numerical data: –Standard deviation known –Standard deviation unknown Confidence Intervals for.
Confidence Interval Estimation
Chap 8-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 8 Confidence Interval Estimation Business Statistics: A First Course.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 6 Sampling and Sampling.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Confidence Interval Estimation.
1 Introduction to Estimation Chapter Concepts of Estimation The objective of estimation is to determine the value of a population parameter on the.
1 Chapter 6. Section 6-1 and 6-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
© 2003 Prentice-Hall, Inc.Chap 6-1 Business Statistics: A First Course (3 rd Edition) Chapter 6 Sampling Distributions and Confidence Interval Estimation.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 11 th Edition.
Population All members of a set which have a given characteristic. Population Data Data associated with a certain population. Population Parameter A measure.
PROBABILITY (6MTCOAE205) Chapter 6 Estimation. Confidence Intervals Contents of this chapter: Confidence Intervals for the Population Mean, μ when Population.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Confidence Interval Estimation.
Chap 8-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 8 Estimation: Single Population Statistics for Business and Economics.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 4th Lesson Estimating Population Values part 2.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 9 Hypothesis Testing: Single.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Confidence Intervals Population Mean σ 2 Unknown Confidence Intervals Population Proportion σ 2 Known Copyright © 2013 Pearson Education, Inc. Publishing.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
Chap 8-1 Chapter 8 Confidence Interval Estimation Statistics for Managers Using Microsoft Excel 7 th Edition, Global Edition Copyright ©2014 Pearson Education.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
© 2002 Prentice-Hall, Inc.Chap 8-1 Basic Business Statistics (8 th Edition) Chapter 8 Confidence Interval Estimation.
Department of Quantitative Methods & Information Systems
Chapter 8 Estimation ©. Estimator and Estimate estimator estimate An estimator of a population parameter is a random variable that depends on the sample.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics: A First Course 5 th Edition.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Chapter 6 Sampling and Sampling Distributions
Chapter 8 Confidence Interval Estimation Statistics For Managers 5 th Edition.
Statistics for Business and Economics 7 th Edition Chapter 7 Estimation: Single Population Copyright © 2010 Pearson Education, Inc. Publishing as Prentice.
Chapter 7 Confidence Interval Estimation
Confidence Intervals and Sample Size
Confidence Interval Estimation
Elementary Statistics: Picturing The World
Chapter 7 Estimation: Single Population
Confidence Interval Estimation
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall
Chapter 8 Estimation: Single Population
Chapter 8 Estimation.
Chapter 7 Estimation: Single Population
Presentation transcript:

Chapter 7 Estimation: Single Population Statistics for Business and Economics 8th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Chapter Goals After completing this chapter, you should be able to: Distinguish between a point estimate and a confidence interval estimate Construct and interpret a confidence interval estimate for a single population mean using both the Z and t distributions Form and interpret a confidence interval estimate for a single population proportion Create confidence interval estimates for the variance of a normal population Determine the required sample size to estimate a mean or proportion within a specified margin of error Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Confidence Intervals Contents of this chapter: Confidence Intervals for the Population Mean, μ when Population Variance σ2 is Known when Population Variance σ2 is Unknown Confidence Intervals for the Population Proportion, P (large samples) Confidence interval estimates for the variance of a normal population Finite population corrections Sample-size determination Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Properties of Point Estimators 7.1 An estimator of a population parameter is a random variable that depends on sample information . . . whose value provides an approximation to this unknown parameter A specific value of that random variable is called an estimate Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about variability Upper Confidence Limit Lower Confidence Limit Point Estimate Width of confidence interval Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Point Estimates μ x P Mean Proportion We can estimate a Population Parameter … with a Sample Statistic (a Point Estimate) μ x Mean Proportion P Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Unbiasedness A point estimator is said to be an unbiased estimator of the parameter  if its expected value is equal to that parameter: Examples: The sample mean is an unbiased estimator of μ The sample variance s2 is an unbiased estimator of σ2 The sample proportion is an unbiased estimator of P Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Unbiasedness (continued) is an unbiased estimator, is biased: Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Bias Let be an estimator of  The bias in is defined as the difference between its mean and  The bias of an unbiased estimator is 0 Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Most Efficient Estimator Suppose there are several unbiased estimators of  The most efficient estimator or the minimum variance unbiased estimator of  is the unbiased estimator with the smallest variance Let and be two unbiased estimators of , based on the same number of sample observations. Then, is said to be more efficient than if The relative efficiency of with respect to is the ratio of their variances: Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Confidence Interval Estimation How much uncertainty is associated with a point estimate of a population parameter? An interval estimate provides more information about a population characteristic than does a point estimate Such interval estimates are called confidence interval estimates Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Confidence Interval Estimate An interval gives a range of values: Takes into consideration variation in sample statistics from sample to sample Based on observation from 1 sample Gives information about closeness to unknown population parameters Stated in terms of level of confidence Can never be 100% confident Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Confidence Interval and Confidence Level If P(a <  < b) = 1 -  then the interval from a to b is called a 100(1 - )% confidence interval of . The quantity 100(1 - )% is called the confidence level of the interval  is between 0 and 1 In repeated samples of the population, the true value of the parameter  would be contained in 100(1 - )% of intervals calculated this way. The confidence interval calculated in this manner is written as a <  < b with 100(1 - )% confidence Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Estimation Process I am 95% confident that μ is between 40 & 60. Random Sample Population Mean X = 50 (mean, μ, is unknown) Sample Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Confidence Level, (1-) (continued) Suppose confidence level = 95% Also written (1 - ) = 0.95 A relative frequency interpretation: From repeated samples, 95% of all the confidence intervals that can be constructed of size n will contain the unknown true parameter A specific interval either will contain or will not contain the true parameter No probability involved in a specific interval Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Point Estimate ± Margin of Error General Formula The general form for all confidence intervals is: The value of the margin of error depends on the desired level of confidence Point Estimate ± Margin of Error Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Confidence Intervals Confidence Intervals Population Mean Population Proportion Population Variance σ2 Known σ2 Unknown (From normally distributed populations) Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall