Production Planning and Control. 1. Naive approach 2. Moving averages 3. Exponential smoothing 4. Trend projection 5. Linear regression Time-Series Models.

Slides:



Advertisements
Similar presentations
Forecasting OPS 370.
Advertisements

© 1997 Prentice-Hall, Inc. S2 - 1 Principles of Operations Management Forecasting Chapter S2.
Operations Management Forecasting Chapter 4
Bina Nusantara Model Ramalan Peretemuan 13: Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
Time Series Analysis Autocorrelation Naive & Simple Averaging
© 2006 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 - Forecasting Chapter 4 - Forecasting © 2006 Prentice Hall, Inc. PowerPoint presentation.
Forecasting.
1 Learning Objectives When you complete this chapter, you should be able to : Identify or Define:  Forecasting  Types of forecasts  Time horizons 
Operations Management
Operations Management
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting Delivered by: Eng.Mosab I. Tabash Eng.Mosab I. Tabash.
Operations Management
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
2. Forecasting. Forecasting  Using past data to help us determine what we think will happen in the future  Things typically forecasted Demand for products.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting.
Slides 13b: Time-Series Models; Measuring Forecast Error
© 2011 Pearson Education, Inc. publishing as Prentice Hall What is Forecasting?  Process of predicting a future event  Underlying basis of all business.
4 – 1 PSM10 © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render Operations Management, 8e Chapter 4 – Forecasting.
© 2008 Prentice Hall, Inc.4 – 1 Outline – Continued  Time-Series Forecasting  Decomposition of a Time Series  Naive Approach  Moving Averages  Exponential.
Time Series “The Art of Forecasting”. What Is Forecasting? Process of predicting a future event Underlying basis of all business decisions –Production.
Operations and Supply Chain Management
Datta Meghe Institute of Management Studies Quantitative Techniques Unit No.:04 Unit Name: Time Series Analysis and Forecasting 1.
Forecasting. What is Forecasting? Process of predicting a future event Underlying basis of all business decisions: Production Inventory Personnel Facilities.
CLASS B.Sc.III PAPER APPLIED STATISTICS. Time Series “The Art of Forecasting”
© 2006 Prentice Hall, Inc.4 – 1 Forcasting © 2006 Prentice Hall, Inc. Heizer/Render Principles of Operations Management, 6e Operations Management, 8e.
Operations Management
4 Forecasting Demand PowerPoint presentation to accompany
Forecasting Professor Ahmadi.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
Time-Series Forecasting Learning Objectives 1.Describe What Forecasting Is 2. Forecasting Methods 3.Explain Time Series & Components 4.Smooth a Data.
Time Series 1.
1 DSCI 3023 Forecasting Plays an important role in many industries –marketing –financial planning –production control Forecasts are not to be thought of.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Lecture 17 Forecasting Books
Time Series Analysis and Forecasting
LSM733-PRODUCTION OPERATIONS MANAGEMENT By: OSMAN BIN SAIF LECTURE 5 1.
1 1 Slide Forecasting Professor Ahmadi. 2 2 Slide Learning Objectives n Understand when to use various types of forecasting models and the time horizon.
Operations Management Chapter 4 Forecasting. So What is Forecasting?  Process of predicting a future event  Forecasting is used for all business decisions.
Copyright ©2016 Cengage Learning. All Rights Reserved
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
© 1999 Prentice-Hall, Inc. Chap Chapter Topics Component Factors of the Time-Series Model Smoothing of Data Series  Moving Averages  Exponential.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
Chapter 4 Class 2.
CHAPTER 2 FORECASTING. LEARNING OBJECTIVES Define forecasting, forecasts approaches Understand the three time horizons Describe, Explain and Apply the.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
Time Series Analysis and Forecasting. Introduction to Time Series Analysis A time-series is a set of observations on a quantitative variable collected.
Learning Objectives Describe what forecasting is Explain time series & its components Smooth a data series –Moving average –Exponential smoothing Forecast.
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting.
Quantitative Forecasting Methods (Non-Naive)
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
© 2006 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 - Forecasting Chapter 4 - Forecasting © 2006 Prentice Hall, Inc. PowerPoint presentation.
Forecasting is the art and science of predicting future events.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting Operations Management, 9e.
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting PowerPoint presentation to accompany Heizer/Render Principles of Operations.
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
4 - 1© 2011 Pearson Education Influence of Product Life Cycle  Introduction and growth require longer forecasts than maturity and decline  As product.
Forecasting Methods Dr. T. T. Kachwala.
Chapter 4.
4 Forecasting Demand PowerPoint presentation to accompany
“The Art of Forecasting”
Module 2: Demand Forecasting 2.
Texas A&M Industrial Engineering
“Measures of Trend” Dr. A. PHILIP AROKIADOSS Chapter 1 Time Series
Presentation transcript:

Production Planning and Control

1. Naive approach 2. Moving averages 3. Exponential smoothing 4. Trend projection 5. Linear regression Time-Series Models Associative Model

 Set of evenly spaced numerical data  Obtained by observing response variable at regular time periods  Forecast based only on past values, no other variables important  Assumes that factors influencing past and present will continue influence in future

Trend Seasonal Cyclical Random

Demand for product or service |||| 1234 Year Average demand over four years Seasonal peaks Trend component Actual demand Random variation

 Persistent, overall upward or downward pattern  Changes due to population, technology, age, culture, etc.  Typically several years duration

 Regular pattern of up and down fluctuations  Due to weather, customs, etc.  Occurs within a single year Number of PeriodLengthSeasons WeekDay7 MonthWeek4-4.5 MonthDay28-31 YearQuarter4 YearMonth12 YearWeek52

 Repeating up and down movements  Affected by business cycle, political, and economic factors  Multiple years duration  Often causal or associative relationships

 Erratic, unsystematic, ‘residual’ fluctuations  Due to random variation or unforeseen events  Short duration and nonrepeating MTWTFMTWTFMTWTFMTWTF

 Assumes demand in next period is the same as demand in most recent period  e.g., If January sales were 68, then February sales will be 68  Sometimes cost effective and efficient  Can be good starting point

 Recent periods are the best predictors of the future  Adjustments to naive models Trend Rate of Change

Use as initialization Use 1996 as the test data set Forecast the first period in 1996 Forecast error: Forecast for the remaining 1996 quarters and calculate the error - what do you see happening?

 Nonstationary - data values increase over time

Can also use Naïve models for seasonal forecasts - data indicates that Quarter 1 seems to be higher than 2,3,4.

 MA is a series of arithmetic means  Used if little or no trend  Used often for smoothing  Provides overall impression of data over time Moving average = ∑ demand in previous n periods n This method is appropriate when there is no noticeable trend or seasonality.

January10 February12 March13 April16 May19 June23 July26 Actual3-Month MonthShed SalesMoving Average ( )/3 = 13 2 / 3 ( )/3 = 16 ( )/3 = 19 1 / ( )/3 = 11 2 / 3

If you suspect seasonality, with quarterly data, it makes sense to use a 4-period moving average (monthly data would use a 12 period moving average). The larger the number of periods, the smoother the fluctuations become.

||||||||||||JFMAMJJASONDJFMAMJJASOND||||||||||||JFMAMJJASONDJFMAMJJASOND Shed Sales – – – – – – – – – – – Actual Sales Moving Average Forecast

 Used when trend is present  Older data usually less important  Weights based on experience and intuition Weighted moving average = ∑ (weight for period n) x (demand in period n) ∑ weights

January10 February12 March13 April16 May19 June23 July26 Actual3-Month Weighted MonthShed SalesMoving Average [(3 x 16) + (2 x 13) + (12)]/6 = 14 1 / 3 [(3 x 19) + (2 x 16) + (13)]/6 = 17 [(3 x 23) + (2 x 19) + (16)]/6 = 20 1 / [(3 x 13) + (2 x 12) + (10)]/6 = 12 1 / 6 Weights AppliedPeriod 3Last month 2Two months ago 1Three months ago 6Sum of weights

 Increasing n smooths the forecast but makes it less sensitive to changes  Do not forecast trends well  Require extensive historical data

 To determine how many periods to use for a moving average, remember:  The smaller the number, the more weight given to recent periods.  A smaller number is desirable when there are sudden shifts in the level of the series.  The greater the number, less weight is given to more recent periods.  A larger number is desirable when there are wide or infrequent fluctuations in the data

30 30 – – – – – 5 5 – Sales demand ||||||||||||JFMAMJJASONDJFMAMJJASOND||||||||||||JFMAMJJASONDJFMAMJJASOND Actual sales Moving average Weighted moving average Figure 4.2

 Form of weighted moving average  Weights decline exponentially  Most recent data weighted most  Requires smoothing constant (  )  Ranges from 0 to 1  Subjectively chosen  Involves little record keeping of past data

New forecast =Last period’s forecast +  (Last period’s actual demand – Last period’s forecast) F t = F t – 1 +  (A t – 1 - F t – 1 ) whereF t =new forecast F t – 1 =previous forecast  =smoothing (or weighting) constant (0 ≤  ≤ 1)

Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant  =.20 F t = F t – 1 +  (A t – 1 - F t – 1 ) whereF t =new forecast F t – 1 =previous forecast  =smoothing (or weighting) constant (0 ≤  ≤ 1)

Weight Assigned to Most2nd Most3rd Most4th Most5th Most RecentRecentRecentRecentRecent SmoothingPeriodPeriodPeriodPeriodPeriod Constant(  )  (1 -  )  (1 -  ) 2  (1 -  ) 3  (1 -  ) 4  =  =

Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant  =.20 New forecast= (153 – 142)

Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant  =.20 New forecast= (153 – 142) = = ≈ 144 cars

– – – – ||||||||| ||||||||| Quarter Demand  =.1 Actual demand  =.5

– – – – ||||||||| ||||||||| Quarter Demand  =.1 Actual demand  =.5  Chose high values of  when underlying average is likely to change  Choose low values of  when underlying average is stable

The objective is to obtain the most accurate forecast no matter the technique We generally do this by selecting the model that gives us the lowest forecast error Forecast error= Actual demand - Forecast value = A t - F t

Mean Absolute Deviation (MAD) MAD = ∑ |Actual - Forecast| n Mean Squared Error (MSE) MSE = ∑ (Forecast Errors) 2 n

Mean Absolute Percent Error (MAPE) MAPE = ∑ 100|Actual i - Forecast i |/Actual i n n i = 1

RoundedAbsoluteRoundedAbsolute ActualForecastDeviationForecastDeviation Tonnagewithforwithfor QuarterUnloaded  =.10  =.10  =.50  =

RoundedAbsoluteRoundedAbsolute ActualForecastDeviationForecastDeviation Tonnagewithforwithfor QuarterUnloaded  =.10  =.10  =.50  = MAD = ∑ |deviations| n = 82.45/8 = For  =.10 = 98.62/8 = For  =.50

RoundedAbsoluteRoundedAbsolute ActualForecastDeviationForecastDeviation Tonnagewithforwithfor QuarterUnloaded  =.10  =.10  =.50  = MAD = 1,526.54/8 = For  =.10 = 1,561.91/8 = For  =.50 MSE = ∑ (forecast errors) 2 n

RoundedAbsoluteRoundedAbsolute ActualForecastDeviationForecastDeviation Tonnagewithforwithfor QuarterUnloaded  =.10  =.10  =.50  = MAD MSE = 44.75/8 = 5.59% For  =.10 = 54.05/8 = 6.76% For  =.50 MAPE = ∑ 100|deviation i |/actual i n i = 1

RoundedAbsoluteRoundedAbsolute ActualForecastDeviationForecastDeviation Tonnagewithforwithfor QuarterUnloaded  =.10  =.10  =.50  = MAD MSE MAPE5.59%6.76%