CHAPTER 3 FORECASTING.

Slides:



Advertisements
Similar presentations
Technology Forecasting Learning Objectives
Advertisements

Agenda of Week V. Forecasting
Forecasting OPS 370.
Forecasting the Demand Those who do not remember the past are condemned to repeat it George Santayana ( ) a Spanish philosopher, essayist, poet.
Operations Management Forecasting Chapter 4
What is Forecasting? A forecast is an estimate of what is likely to happen in the future. Forecasts are concerned with determining what the future will.
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Forecasting Y.-H. Chen, Ph.D. Production / Operations Management
Forecasting Ross L. Fink.
Forecasting.
1 Lecture 2 Decision Theory Chapter 5S. 2  Certainty - Environment in which relevant parameters have known values  Risk - Environment in which certain.
CHAPTER 3 Forecasting.
Lecture 3 Forecasting CT – Chapter 3.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Forecasting Car buyer- Models & Option Does the dealer know!
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Chapter 3 Forecasting McGraw-Hill/Irwin
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Chapter 4 Forecasting Mike Dohan BUSI Forecasting What is forecasting? Why is it important? In what areas can forecasting be applied?
The Importance of Forecasting in POM
Forecasting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Forecasting.
Forecasting.
Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Operations Management
3-1Forecasting CHAPTER 3 Forecasting Homework Problems: # 2,3,4,8(a),22,23,25,27 on pp
Forecasting supply chain requirements
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
3-1Forecasting. 3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Forecasting Professor Ahmadi.
Time-Series Forecasting Learning Objectives 1.Describe What Forecasting Is 2. Forecasting Methods 3.Explain Time Series & Components 4.Smooth a Data.
3-1 Forecasting I see that you will get an A this semester. 10 th ed.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Business Processes Sales Order Management Aggregate Planning Master Scheduling Production Activity Control Quality Control Distribution Mngt. © 2001 Victor.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
OM3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights.
BUAD306 Chapter 3 – Forecasting.
FORECASTING Kusdhianto Setiawan Gadjah Mada University.
3-1Forecasting Ghana Institute of Management and Public Administration [GIMPA] McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson.
Adeyl Khan, Faculty, BBA, NSU Car buyer- Models & Option Does the dealer know! Basic Managerial function- Planning.
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
Forecasting is the art and science of predicting future events.
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
Forecasting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
Stevenson 3 Forecasting. 3-2 Learning Objectives  List the elements of a good forecast.  Outline the steps in the forecasting process.  Compare and.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Forecasting Production and Operations Management 3-1.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Forecas ting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Lecture 4 Forecasting. Time Series is a sequence of measurements over time, usually obtained at equally spaced intervals – Daily – Monthly –
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Copyright © 2014 by McGraw-Hill Education (Asia). All rights reserved. 3 Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Forecasts.
RAJEEV GANDHI COLLEGE OF MANAGEMENT STUDIES
Stevenson 3 Forecasting.
Forecasting Elements of good forecast Accurate Timely Reliable
Presentation transcript:

CHAPTER 3 FORECASTING

FORECASTING Forecasts serve as a basis for planning--capacity, budgeting, sales, production, inventory, personnel Successful forecasting requires a skillful blending of both art and science Two uses of forecasts: Planning the system--Long Range Planning the use of the system--Short Range

Forecasting Assumes causal system past ==> future Forecasts rarely perfect because of randomness Forecasts more accurate for groups vs. individuals Forecast accuracy decreases as time horizon increases I see that you will get an A this semester.

Elements of a Good Forecast Timely Accurate Reliable Written Easy to use Meaningful

Steps in the Forecasting Process Step 1 Determine purpose of forecast Step 2 Establish a time horizon Step 3 Select a forecasting technique Step 4 Gather and analyze data Step 5 Prepare the forecast Step 6 Monitor the forecast “The forecast”

APPROACHES TO FORECASTING QUALITATIVE--based on subjective inputs, soft data judgmental forecasts, opinions, hunches, experience, etc. QUANTITATIVE--based on historical data --project past experience into the future --uncover relationships between variables that can be used to predict the future

Types of Forecasts Judgmental - uses subjective inputs Time series - uses historical data assuming the future will be like the past Associative models - uses explanatory variables to predict the future

Judgmental Forecasts Executive opinions Sales force composite Consumer surveys Outside opinion Opinions of managers and staff Delphi technique

QUANTITATIVE FORECASTS Time-Series techniques --Naïve --Moving Average models --Exponential Smoothing models --Classical Decomposition --Box-Jenkins ARIMA models --Neural Networks

QUANTITATIVE FORECASTS Causal or Associative techniques --Simple linear regression --Multiple linear regression --Nonlinear regression

FORECASTING DATA “time-series” --time-ordered sequence of observations taken at regular intervals over a period of time Annual, Quarterly, Monthly, Weekly, Daily, Hourly, etc.

UNDERLYING BEHAVIOR Trend - long-term movement in data Seasonality - short-term, regular, periodic variations in data Cycles - wave-like variations of more than one year’s duration Irregular variations - caused by unusual circumstances Random variations - caused by chance

Forecast Variations Trend Cycles Irregular variation 90 89 88 Seasonal variations

Naive Forecasts Uh, give me a minute.... We sold 250 wheels last week.... Now, next week we should sell.… “the latest observation in a sequence is used as the forecast for the next period” Ft = At-1

MAn Ft = n Ai “an average that is repeatedly updated” å Simple Moving Average MAn Ft = n Ai “an average that is repeatedly updated” i = 1 å

Exponential Smoothing Ft = Ft-1 + a(At-1 - Ft-1) Premise--The most recent observations might have the highest predictive value. Therefore, we should give more weight to the more recent time periods when forecasting.

Forecast Accuracy Error – difference between actual value and predicted value Mean absolute deviation (MAD) - Average absolute error Mean squared error (MSE) - Average of squared error Mean absolute percent error (MAPE) - Average absolute percent error Tracking Signal - Ratio of cumulative error and MAD

 - forecast Actual n MAD = Actual forecast - å n MSE = Actual MAD,MSE, & MAPE MAD = Actual forecast - å n MSE = Actual forecast) - 1 2 å n ( Actual - forecast  X 100 MAPE = Actual n

å å Tracking Signal Tracking signal = (Actual - forecast) MAD