Operations Management

Slides:



Advertisements
Similar presentations
Forecasting OPS 370.
Advertisements

© 1997 Prentice-Hall, Inc. S2 - 1 Principles of Operations Management Forecasting Chapter S2.
Operations Management Forecasting Chapter 4
Bina Nusantara Model Ramalan Peretemuan 13: Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
What is Forecasting? A forecast is an estimate of what is likely to happen in the future. Forecasts are concerned with determining what the future will.
PRODUCTION AND OPERATIONS MANAGEMENT
Forecasting.
1 Learning Objectives When you complete this chapter, you should be able to : Identify or Define:  Forecasting  Types of forecasts  Time horizons 
PowerPoint presentation to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
J0444 OPERATION MANAGEMENT
Operations Management
Operations Management
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting Delivered by: Eng.Mosab I. Tabash Eng.Mosab I. Tabash.
Operations Management
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
2. Forecasting. Forecasting  Using past data to help us determine what we think will happen in the future  Things typically forecasted Demand for products.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting.
Mr. David P. Blain. C.Q.E. Management Department UNLV
© 2011 Pearson Education, Inc. publishing as Prentice Hall What is Forecasting?  Process of predicting a future event  Underlying basis of all business.
4 – 1 PSM10 © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render Operations Management, 8e Chapter 4 – Forecasting.
© 2008 Prentice Hall, Inc.4 – 1 Outline – Continued  Time-Series Forecasting  Decomposition of a Time Series  Naive Approach  Moving Averages  Exponential.
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
Time Series “The Art of Forecasting”. What Is Forecasting? Process of predicting a future event Underlying basis of all business decisions –Production.
Operations and Supply Chain Management
Datta Meghe Institute of Management Studies Quantitative Techniques Unit No.:04 Unit Name: Time Series Analysis and Forecasting 1.
Chapter 15 Demand Management & Forecasting
Forecasting. What is Forecasting? Process of predicting a future event Underlying basis of all business decisions: Production Inventory Personnel Facilities.
Production Planning and Control. 1. Naive approach 2. Moving averages 3. Exponential smoothing 4. Trend projection 5. Linear regression Time-Series Models.
CLASS B.Sc.III PAPER APPLIED STATISTICS. Time Series “The Art of Forecasting”
© 2006 Prentice Hall, Inc.4 – 1 Forcasting © 2006 Prentice Hall, Inc. Heizer/Render Principles of Operations Management, 6e Operations Management, 8e.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
Chapter 4 Forecasting Production Planning Overview  What is forecasting?  Types of forecasts  7 steps of forecasting  Qualitative forecasting.
Forecasting Professor Ahmadi.
Time-Series Forecasting Learning Objectives 1.Describe What Forecasting Is 2. Forecasting Methods 3.Explain Time Series & Components 4.Smooth a Data.
Time Series 1.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Lecture 17 Forecasting Books
LSM733-PRODUCTION OPERATIONS MANAGEMENT By: OSMAN BIN SAIF LECTURE 5 1.
1 1 Slide Forecasting Professor Ahmadi. 2 2 Slide Learning Objectives n Understand when to use various types of forecasting models and the time horizon.
10B11PD311 Economics. Process of predicting a future event on the basis of past as well as present knowledge and experience Underlying basis of all business.
Copyright ©2016 Cengage Learning. All Rights Reserved
1 Chapter 13 Forecasting  Demand Management  Qualitative Forecasting Methods  Simple & Weighted Moving Average Forecasts  Exponential Smoothing  Simple.
© 1999 Prentice-Hall, Inc. Chap Chapter Topics Component Factors of the Time-Series Model Smoothing of Data Series  Moving Averages  Exponential.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
Production and Operations Management Forecasting session II Predicting the future demand Qualitative forecast methods  Subjective Quantitative.
CHAPTER 2 FORECASTING. LEARNING OBJECTIVES Define forecasting, forecasts approaches Understand the three time horizons Describe, Explain and Apply the.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
Learning Objectives Describe what forecasting is Explain time series & its components Smooth a data series –Moving average –Exponential smoothing Forecast.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting.
Quantitative Forecasting Methods (Non-Naive)
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
© 2006 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 - Forecasting Chapter 4 - Forecasting © 2006 Prentice Hall, Inc. PowerPoint presentation.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting PowerPoint presentation to accompany Heizer/Render Principles of Operations.
4-1 Operations Management Forecasting Chapter Learning Objectives When you complete this chapter, you should be able to : Identify or Define :
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
4 - 1© 2011 Pearson Education Influence of Product Life Cycle  Introduction and growth require longer forecasts than maturity and decline  As product.
Chapter 4.
4 Forecasting Demand PowerPoint presentation to accompany
“The Art of Forecasting”
Chapter 3 –Forecasting.
Module 2: Demand Forecasting 2.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
Texas A&M Industrial Engineering
Prepared by Lee Revere and John Large
“Measures of Trend” Dr. A. PHILIP AROKIADOSS Chapter 1 Time Series
Presentation transcript:

Operations Management Chapter 4 - Forecasting PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 6e Operations Management, 8e © 2006 Prentice Hall, Inc.

?? What is Forecasting? Process of predicting a future event Underlying basis of all business decisions Production Inventory Personnel Facilities ??

Forecasting Time Horizons Short-range forecast Up to 1 year, generally less than 3 months Purchasing, job scheduling, workforce levels, job assignments, production levels Medium-range forecast 3 months to 3 years Sales and production planning, budgeting Long-range forecast 3+ years New product planning, facility location, research and development

Distinguishing Differences Medium/long range forecasts deal with more comprehensive issues and support management decisions regarding planning and products, plants and processes Short-term forecasting usually employs different methodologies than longer-term forecasting Short-term forecasts tend to be more accurate than longer-term forecasts

Influence of Product Life Cycle Introduction – Growth – Maturity – Decline Introduction and growth require longer forecasts than maturity and decline As product passes through life cycle, forecasts are useful in projecting Staffing levels Inventory levels Factory capacity

Types of Forecasts Economic forecasts Technological forecasts Address business cycle – inflation rate, money supply, housing starts, etc. Technological forecasts Predict rate of technological progress Impacts development of new products Demand forecasts Predict sales of existing product

The Realities! Forecasts are seldom perfect Most techniques assume an underlying stability in the system Product family and aggregated forecasts are more accurate than individual product forecasts

Forecasting Approaches Qualitative Methods Used when situation is vague and little data exist New products New technology Involves intuition, experience e.g., forecasting sales on Internet

Forecasting Approaches Quantitative Methods Used when situation is ‘stable’ and historical data exist Existing products Current technology Involves mathematical techniques e.g., forecasting sales of color televisions

Overview of Quantitative Approaches Naive approach Moving averages Exponential smoothing Trend projection Linear regression Time-Series Models Associative Model

Time Series Forecasting Set of evenly spaced numerical data Obtained by observing response variable at regular time periods Forecast based only on past values Assumes that factors influencing past and present will continue influence in future

Time Series Components Trend Cyclical Seasonal Random

Components of Demand Trend component Seasonal peaks Actual demand Demand for product or service | | | | 1 2 3 4 Year Seasonal peaks Actual demand Average demand over four years Random variation Figure 4.1

Trend Component Persistent, overall upward or downward pattern Changes due to population, technology, age, culture, etc. Typically several years duration

Seasonal Component Regular pattern of up and down fluctuations Due to weather, customs, etc. Occurs within a single year Number of Period Length Seasons Week Day 7 Month Week 4-4.5 Month Day 28-31 Year Quarter 4 Year Month 12 Year Week 52

Cyclical Component Repeating up and down movements Affected by business cycle, political, and economic factors Multiple years duration Often causal or associative relationships 0 5 10 15 20

Random Component Erratic, unsystematic, ‘residual’ fluctuations Due to random variation or unforeseen events Short duration and nonrepeating M T W T F

Naive Approach Assumes demand in next period is the same as demand in most recent period e.g., If May sales were 48, then June sales will be 48 Sometimes cost effective and efficient

∑ demand in previous n periods Moving Average Method MA is a series of arithmetic means Used if little or no trend Used often for smoothing Provides overall impression of data over time Moving average = ∑ demand in previous n periods n

Moving Average Example January 10 February 12 March 13 April 16 May 19 June 23 July 26 Actual 3-Month Month Shed Sales Moving Average 10 12 13 (10 + 12 + 13)/3 = 11 2/3 (12 + 13 + 16)/3 = 13 2/3 (13 + 16 + 19)/3 = 16 (16 + 19 + 23)/3 = 19 1/3

Graph of Moving Average Moving Average Forecast | | | | | | | | | | | | J F M A M J J A S O N D Shed Sales 30 – 28 – 26 – 24 – 22 – 20 – 18 – 16 – 14 – 12 – 10 – Actual Sales

Weighted Moving Average Used when trend is present Older data usually less important Weights based on experience and intuition Weighted moving average = ∑ (weight for period n) x (demand in period n) ∑ weights

Weighted Moving Average Weights Applied Period 3 Last month 2 Two months ago 1 Three months ago 6 Sum of weights Weighted Moving Average January 10 February 12 March 13 April 16 May 19 June 23 July 26 Actual 3-Month Weighted Month Shed Sales Moving Average [(3 x 16) + (2 x 13) + (12)]/6 = 141/3 [(3 x 19) + (2 x 16) + (13)]/6 = 17 [(3 x 23) + (2 x 19) + (16)]/6 = 201/2 10 12 13 [(3 x 13) + (2 x 12) + (10)]/6 = 121/6

Potential Problems With Moving Average Increasing n smooths the forecast but makes it less sensitive to changes Do not forecast trends well Require extensive historical data

Moving Average And Weighted Moving Average 30 – 25 – 20 – 15 – 10 – 5 – Sales demand | | | | | | | | | | | | J F M A M J J A S O N D Actual sales Moving average Figure 4.2

Exponential Smoothing Form of weighted moving average Weights decline exponentially Most recent data weighted most Requires smoothing constant () Ranges from 0 to 1 Subjectively chosen Involves little record keeping of past data

Exponential Smoothing New forecast = last period’s forecast + a (last period’s actual demand – last period’s forecast) Ft = Ft – 1 + a(At – 1 - Ft – 1) where Ft = new forecast Ft – 1 = previous forecast a = smoothing (or weighting) constant (0  a  1)

Exponential Smoothing Example Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant a = .20

Exponential Smoothing Example Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant a = .20 New forecast = 142 + .2(153 – 142)

Exponential Smoothing Example Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant a = .20 New forecast = 142 + .2(153 – 142) = 142 + 2.2 = 144.2 ≈ 145 cars