Lecture 28: Comparison of different numerical integrators 1.Adaptive Simpson’s and Trapezoid Rules 2. Romberg Integration 3. Adaptive Gaussian Quadrature.

Slides:



Advertisements
Similar presentations
Prof. Muhammad Saeed ( Differentiation and Integration )
Advertisements

Numerical Integration
Lecture 26: Numerical Integration Trapezoid rule Simpson's rule Simpson's 3/8 rule Boole’s rule Newton-Cotes Formulas.
1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.
Computational Methods in Physics PHYS 3437
Section 5.7 Numerical Integration. Approximations for integrals: Riemann Sums, Trapezoidal Rule, Simpson's Rule Riemann Sum: Trapezoidal Rule: Simpson’s.
Numerical Integration of Functions
Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00.
Chapter 7 Numerical Differentiation and Integration
11. Numerical Differentiation and Integration 11
Today’s class Romberg integration Gauss quadrature Numerical Methods
Numerical Integration
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 30 Numerical Integration & Differentiation.
Chapter 5 Numerical Differentiation and Integration.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 29 Numerical Integration.
Numerical Integration
CISE301_Topic7KFUPM1 SE301: Numerical Methods Topic 7 Numerical Integration Lecture KFUPM Read Chapter 21, Section 1 Read Chapter 22, Sections 2-3.
CISE301_Topic71 SE301: Numerical Methods Topic 7 Numerical Integration Lecture KFUPM (Term 101) Section 04 Read Chapter 21, Section 1 Read Chapter.
Quadrature Greg Beckham. Quadrature Numerical Integration Goal is to obtain the integral with as few computations of the integrand as possible.
Numerical Integration UC Berkeley Fall 2004, E77 Copyright 2005, Andy Packard. This work is licensed under the.
Simpson’s 1/3 rd Rule of Integration. What is Integration? Integration The process of measuring the area under a.
Area of a single trapezoid = h
1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.
Numerical Integration Approximating Definite Integral.
Automatic Integration
3. Numerical integration (Numerical quadrature) .
Lecture 19 - Numerical Integration CVEN 302 July 22, 2002.
Integration Integration: is the total value, or summation, of f(x) dx over the range from a to b:
Numerical Computation
1 Chapter 7 NUMERICAL INTEGRATION. 2 PRELIMINARIES We use numerical integration when the function f(x) may not be integrable in closed form or even in.
1 Numerical Analysis Lecture 12 Numerical Integration Dr. Nader Okasha.
4.6 Numerical Integration -Trapezoidal Rule -Simpson’s Rule
1 Simpson’s 1/3 rd Rule of Integration. 2 What is Integration? Integration The process of measuring the area under a curve. Where: f(x) is the integrand.
Introduction to Numerical Analysis I
Chapters 5 and 6: Numerical Integration
4.6 Numerical Integration Trapezoid and Simpson’s Rules.
4.6 Numerical Integration. The Trapezoidal Rule One method to approximate a definite integral is to use n trapezoids.
1 Numerical Integration Section Why Numerical Integration? Let’s say we want to evaluate the following definite integral:
數值方法 2008, Applied Mathematics NDHU 1 Simpson rule Composite Simpson rule.
MA2213 Lecture 4 Numerical Integration. Introduction Definition is the limit of Riemann sums I(f)
EE3561_Unit 7Al-Dhaifallah EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)
5.1.  When we use the midpoint rule or trapezoid rule we can actually calculate the maximum error in the calculation to get an idea how much we are off.
5. Integration 2.Quadrature as Box Counting 3.Algorithm: Trapezoid Rule 4.Algorithm: Simpson’s Rule 5.Integration Error 6.Algorithm: Gaussian Quadrature.
Integration For a function f, The “integral of f from a to b” is the area under the graph of the function. If f is continuous, then the area is well defined,
數值方法 2008, Applied Mathematics NDHU 1 Numerical Integration.
Quadrature rules 1Michael Sokolov / Numerical Methods for Chemical Engineers / Numerical Quadrature Michael Sokolov ETH Zurich, Institut für Chemie- und.
ACSL, POSTECH1 MATLAB 입문 CHAPTER 8 Numerical calculus and differential equations.
Techniques for Numerical Integration
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 5.5 Trapezoidal Rule.
6. Numerical Integration 6.1 Definition of numerical integration. 6.2 Reasons to use numerical integration. 6.3 Formulas of numerical Integration. 6.4.
The purpose of Chapter 5 is to develop the basic principles of numerical integration Usefule Words integrate, integral 积分(的), integration 积分(法), quadrature.
Chapters 5 and 6: Numerical Integration Code development trapezoid rule Simpson’s rule Gauss quadrature Laguerre quadrature Analysis changing the variable.
SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053.
Quadrature – Concepts (numerical integration) Don Allen.
數值方法 2008, Applied Mathematics NDHU 1 Numerical Integration.
Midpoint and Trapezoidal Rules
Numerical Analysis Lecture 42.
MTH1170 Numeric Integration
5.5 Trapezoidal Rule.
Area of a single trapezoid = h
Integration Review Problems
Numerical Integration:
Area of a single trapezoid = h
Chapter 6 Applications of Derivatives Section 6.5 Trapezoidal Rule.
MATH 174: NUMERICAL ANALYSIS I
Numerical Integration of Functions
Simpson’s 1/3rd Rule of Integration
Area of a single trapezoid = h
Numerical Integration
Presentation transcript:

Lecture 28: Comparison of different numerical integrators 1.Adaptive Simpson’s and Trapezoid Rules 2. Romberg Integration 3. Adaptive Gaussian Quadrature

adaptivesimpson.m %test of adaptive Simpson's rule and comparison with composite Trapezoid and Composite Simpson's tol=10^(-10); a=1; b=4; f1=inline('sin(x).^2') disp(['a=',num2str(a),' b=',num2str(b)]) %display limits of integration intexact=quad(f1,a,b,10^(-16)); [fadaptive funccount]=quad(f1,a,b,tol); disp(['Integration using adaptive simpson gives error=',num2str(fadaptive-intexact), ' in ',num2str(funccount), ' function evaluations']); disp(' '); disp(['Now compare with n step of composite simpson rule:']); i=1:10; nvec=2.^(i); ….

>> adaptivesimpson f1 = Inline function: f1(x) = sin(x).^2 a=1 b=4 Integration using adaptive simpson gives error= e-013 in 249 function evaluations Now compare with n step of composite simpson rule: n=2 Error in composite simpson rule = n=4 Error in composite simpson rule = n=8 Error in composite simpson rule = e-005 n=16 Error in composite simpson rule = e-006 n=32 Error in composite simpson rule = e-007 n=64 Error in composite simpson rule = e-009 n=128 Error in composite simpson rule = e-010 n=256 Error in composite simpson rule = e-011 n=512 Error in composite simpson rule = e-012 n=1024 Error in composite simpson rule =-1.299e-013 The same function with composite trapezoid rule: a=1 b=4 n=2 Error in composite trapezod rule = n=4 Error in composite trapezod rule = n=8 Error in composite trapezod rule = n=16 Error in composite trapezod rule = n=32 Error in composite trapezod rule =5.8673e-005 n=64 Error in composite trapezod rule =1.4662e-005 n=128 Error in composite trapezod rule =3.665e-006 n=256 Error in composite trapezod rule =9.1623e-007 n=512 Error in composite trapezod rule =2.2906e-007 n=1024 Error in composite trapezod rule =5.7264e-008 n=2048 Error in composite trapezod rule =1.4316e-008 n=4096 Error in composite trapezod rule =3.579e-009

romberg1.m % Romberg integration with number of function evaluations count funccount % Computes approximation to definite integral % Inputs: Matlab inline function specifying integrand f, % a,b integration interval, n=number of rows % Output: [r(n,n) funccount] function [r1 funccount] =romberg(f,a,b,n) h=(b-a)./(2.^(0:n-1)); r(1,1)=(b-a)*(f(a)+f(b))/2; funccount=2; for j=2:n subtotal = 0; for i=1:2^(j-2) subtotal = subtotal + f(a+(2*i-1)*h(j)); funccount= funccount+1; end r(j,1) = r(j-1,1)/2+h(j)*subtotal; for k=2:j r(j,k) = (4^(k-1)*r(j,k-1)-r(j-1,k-1))/(4^(k-1)-1); end r1=r(n,n);

rombergtest.m %test of romberg integration vs. adaptive Simpson's rule and comparison with composite Trapezoid and Composite Simpson's tol=10^(-10); %desired tolerance a=1; b=4; f1=inline('sin(x).^2') %function f(x) disp(['a=',num2str(a),' b=',num2str(b)]) %display limits of integration intexact=quadl(f1,a,b,10^(-16)); %calculation of "exact" value of integral [fadaptive funccount]=quad(f1,a,b,tol); disp(['Integration using adaptive simpson gives error=',num2str(fadaptive-intexact), ' in ',num2str(funccount), ' function evaluations']); disp(['Now compare with Romberg integration:']); i=1:8; nvec=1.*(i); for i=1:length(nvec) [intromber funccount]=romberg1(f1,a,b,nvec(i)); disp([' Error in Romberg integration =',num2str(intromber-intexact), ' in ',num2str(funccount), ' function evaluations']);% end …

>> rombergtest f1 = Inline function: f1(x) = sin(x).^2 a=1 b=4 Integration using adaptive simpson gives error= e-013 in 249 function evaluations Now compare with Romberg integration: Error in Romberg integration = in 2 function evaluations Error in Romberg integration = in 3 function evaluations Error in Romberg integration = in 5 function evaluations Error in Romberg integration = in 9 function evaluations Error in Romberg integration =3.8208e-007 in 17 function evaluations Error in Romberg integration = e-010 in 33 function evaluations Error in Romberg integration =7.5717e-014 in 65 function evaluations Error in Romberg integration =2.2204e-016 in 129 function evaluations Now compare with n step of composite simpson rule: n=2 Error in composite simpson rule = n=4 Error in composite simpson rule = n=8 Error in composite simpson rule = e-005 n=16 Error in composite simpson rule = e-006 n=32 Error in composite simpson rule = e-007 n=64 Error in composite simpson rule = e-009 n=128 Error in composite simpson rule = e-010 n=256 Error in composite simpson rule = e-011 n=512 Error in composite simpson rule = e-012 n=1024 Error in composite simpson rule = e-013 …

rombergtest2.m %rombergtest2.m: test of romberg integration vs. adaptive Simpson's rule and comparison with composite Trapezoid and Composite Simpson's tol=10^(-10); %desired tolerance a=1; b=15; f1=inline('sin(x).^2') %function f(x) disp(['a=',num2str(a),' b=',num2str(b)]) %display limits of integration intexact=quadl(f1,a,b,10^(-16)); %calculation of "exact" value of integral [fadaptive funccount]=quad(f1,a,b,tol); disp(['Integration using adaptive simpson gives error=',num2str(fadaptive-intexact), ' in ',num2str(funccount), ' function evaluations']); disp(' '); disp(['Now compare with Romberg integration:']); disp(' '); …

>> rombergtest2 f1 = Inline function: f1(x) = sin(x).^2 a=1 b=15 Integration using adaptive simpson gives error= e-013 in 1233 function evaluations Now compare with Romberg integration: Error in Romberg integration = in 2 function evaluations Error in Romberg integration = in 3 function evaluations Error in Romberg integration = in 5 function evaluations Error in Romberg integration = in 9 function evaluations Error in Romberg integration = in 17 function evaluations Error in Romberg integration = in 33 function evaluations Error in Romberg integration =2.3442e-005 in 65 function evaluations Error in Romberg integration = e-008 in 129 function evaluations Error in Romberg integration =8.6331e-012 in 257 function evaluations Error in Romberg integration =0 in 513 function evaluations Error in Romberg integration = e-016 in 1025 function evaluations Error in Romberg integration = e-015 in 2049 function evaluations Now compare with n step of composite simpson rule: n=2 Error in composite simpson rule = n=4 Error in composite simpson rule =4.165 n=8 Error in composite simpson rule = n=16 Error in composite simpson rule = n=32 Error in composite simpson rule = n=64 Error in composite simpson rule =9.8788e-005 n=128 Error in composite simpson rule =6.0685e-006 n=256 Error in composite simpson rule =3.7766e-007 n=512 Error in composite simpson rule =2.3579e-008 n=1024 Error in composite simpson rule =1.4733e-009

gaussianadaptive.m %gaussianadaptive.m: test of gaussian adaptive integration vs. adaptive Simpson's rule and Romberg's integration tol=10^(-8); %desired tolerance a=1; b=4; f1=inline('sin(x).^2') %function f(x) disp(['a=',num2str(a),' b=',num2str(b)]) %display limits of integration intexact=quadl(f1,a,b,10^(-16)); %calculation of "exact" value of integral [fadaptive funccount]=quadl(f1,a,b,tol); disp(['Integration using adaptive Gaussian quadrature gives error=',num2str(fadaptive-intexact), ' in ',num2str(funccount), ' function evaluations']); disp(' '); [fadaptive funccount]=quad(f1,a,b,10^(-10)); disp(['Integration using adaptive simpson gives error=',num2str(fadaptive-intexact), ' in ',num2str(funccount), ' function evaluations']); disp(' '); disp(['Now compare with Romberg integration:']); …

>> gaussianadaptive f1 = Inline function: f1(x) = sin(x).^2 a=1 b=4 Integration using adaptive Gaussian quadrature gives error=2.1849e-013 in 48 function evaluations Integration using adaptive simpson gives error= e-013 in 249 function evaluations Now compare with Romberg integration: Error in Romberg integration = in 2 function evaluations Error in Romberg integration = in 3 function evaluations Error in Romberg integration = in 5 function evaluations Error in Romberg integration = in 9 function evaluations Error in Romberg integration =3.8208e-007 in 17 function evaluations Error in Romberg integration = e-010 in 33 function evaluations Error in Romberg integration =7.5717e-014 in 65 function evaluations Error in Romberg integration =2.2204e-016 in 129 function evaluations Error in Romberg integration = e-016 in 257 function evaluations Error in Romberg integration = e-016 in 513 function evaluations Error in Romberg integration =4.4409e-016 in 1025 function evaluations Error in Romberg integration =0 in 2049 function evaluations

>> adaptivesimpson f1 = Inline function: f1(x) = sin(x).^2 a=1 b=4 Integration using adaptive simpson gives error= e-013 in 249 function evaluations Now compare with n step of composite simpson rule: n=2 Error in composite simpson rule = n=4 Error in composite simpson rule = n=8 Error in composite simpson rule = e-005 n=16 Error in composite simpson rule = e-006 n=32 Error in composite simpson rule = e-007 n=64 Error in composite simpson rule = e-009 n=128 Error in composite simpson rule = e-010 n=256 Error in composite simpson rule = e-011 n=512 Error in composite simpson rule = e-012 n=1024 Error in composite simpson rule =-1.299e-013 The same function with composite trapezoid rule: a=1 b=4 n=2 Error in composite trapezod rule = n=4 Error in composite trapezod rule = n=8 Error in composite trapezod rule = n=16 Error in composite trapezod rule = n=32 Error in composite trapezod rule =5.8673e-005 n=64 Error in composite trapezod rule =1.4662e-005 n=128 Error in composite trapezod rule =3.665e-006 n=256 Error in composite trapezod rule =9.1623e-007 n=512 Error in composite trapezod rule =2.2906e-007 n=1024 Error in composite trapezod rule =5.7264e-008 n=2048 Error in composite trapezod rule =1.4316e-008 n=4096 Error in composite trapezod rule =3.579e-009