Induced EMF. EMF EMF - It is potential difference and is measured in volts (V ).

Slides:



Advertisements
Similar presentations
Faraday Generators/ Motors Induced Current Lenz’s Law/ Changing B
Advertisements

Faradays Law of Induction A changing magnetic field induces an electric field. The induced electric field causes a current to flow in a conductor.
NAT Review S.Y
Electromagnetism Quiz Review Mr. Davis Baltimore Poly.
Ch22:Electromagnetic Induction Electric guitars have electromagnetic pickups located beneath the strings (shiny rectangle). These pickups work because.
Electromagnetic Induction
Induced EMF and Inductance 1830s Michael Faraday Joseph Henry.
Electromagnetism Physics 100 Chapt 15 Michael Faraday.
Physics 24-Winter 2003-L181 Electromagnetic Induction Basic Concepts Faraday’s Law (changing magnetic flux induces emf) Lenz’s Law (direction of induced.
Electromagnetic Induction and Faraday’s Law Physics Department, New York City College of Technology.
Magnetic Field Generator: Toroid. Example: Force Between Parallel Currents Four long wires are parallel to each other, their cross sections forming the.
Electromagnetic Induction
CHAPTER 20, SECTION 1 ELECTRICITY FROM MAGNETISM.
Electromagnetic Induction N S N Voltmeter + - Stationary.
When a coil of wire and a bar magnet are moved in relation to each other, an electric current is produced. This current is produced because the strength.
 Forcing a wire through a magnetic field produces (generates) a current in the wire  Example: Generator  Converts mechanical energy into electrical.
Book Reference : Pages To understand the direction of induced currents and their associated fields 2.To introduce the terms magnetic flux and.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
Electromagnetic Induction Faraday’s Law. Induced Emf A magnet entering a wire causes current to move with in the wires I = Emf / R The induced current.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Induced Voltages and Inductance
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
Presentation is prepared by: Guided By: Meet Patel(13BEEEM052) Prof. Krishna Chauhan Jaydev Kubavat(13BEEEG049) Electrical Engg. Dept. Mayur Patel(13BEEEM053)
Faraday’s Law Sections Physics 1161: Lecture 14 Changing Magnetic Fields create Electric Fields.
Chapter 21 Magnetic Induction. Electric and magnetic forces both act only on particles carrying an electric charge Moving electric charges create a magnetic.
Induced Voltage and Inductance
Electromagnetic Induction and Faradays Law Ripon High School AP Physics
AP Physics Chapter 21 Electromagnetic Induction, Faraday’s Law, and AC Circuits An electric current produces a magnetic field and a magnetic field exerts.
Magnetic Flux and Faraday’s Law of Induction (Lecture I)
Electromagnetic Induction. Faraday Discovered basic principle of electromagnetic induction Whenever the magnetic field around a conductor is moving or.
Electromagnetic Induction The Discoveries of Michael Faraday and Joseph Henry Showed That a Current Can Be Induced by a Changing Magnetic Field.
Induced Voltages and Inductance
Topic: Electromagnetic induction Objectives: 1.Calculate the magnetic flux through a coil. 2.Calculate the induced electromotive force (EMF) in the coil.
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
Unit 5: Electromagnetism. Day 1: Faraday’s Law of Induction Objectives: Induced EMF Electromagnetic Induction Magnetic Flux Faraday’s law of Induction.
Chapter 22 Electromagnetic Induction Magnetic Fields Produced by Currents The direction of the magnetic field due to a current-carrying wire can.
29. Electromagnetic Induction
FARADAY'S LAW OF INDUCTION
Magnetic Induction. Key Points about Induction  If the current in the primary circuit is constant, then the current in the secondary circuit is zero.
112/7/2015 Applied Physics Lecture 15  Electricity and Magnetism Induced voltages and induction Magnetic flux and induced emf Faraday’s law Chapter
Ch 21 1 Chapter 21 Electromagnetic Induction Faraday’s Law AC Circuits © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson.
Lenz’s Law and Faraday’s Law
Magnetism #2 Induced EMF Ch.20. Faraday’s Law of Induction We now know that a current carrying wire will produce its own magnetic field with the lines.
Physics 102: Lecture 10, Slide 1 Faraday’s Law Physics 102: Lecture 10 Changing Magnetic Fields create Electric Fields Last Two Lectures Magnetic fields.
2/18/2011 Objectives Apply the laws of magnetism and induced emf.
Electromagnetic Induction. Induced current/emf(voltage) Current or voltage produced by a changing magnetic field.
CH Review Changing the magnetic flux in a coil induces an emf around the coil. (As long as the coil is connected in a complete circuit, a current.
Magnets and Electromagnetism Chapter Outline 1.Magnets, magnetic poles, and magnetic force. 2.Magnetic effects of electric current. 3.Magnetic effects.
Electromagnetic Induction and Faraday’s Law.. Induced Current.
Lecture 10: Electromagnetic Induction (Ch. 22) contd
1 Magnetic flux [weber Wb], defines the amount of magnetic field (B [Tesla]) which travels perpendicular to an area A [m 2 ] Symbol: Ф Unit: Weber Wb A.
Magnets and Electromagnetism Chapter Outline 1.Magnets, magnetic poles, and magnetic force. 2.Magnetic effects of electric current. 3.Magnetic effects.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
Electromagnetic Induction Magnetism can induce electrical currents in wires You just have to keep motion between the magnets and wires.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
1© Manhattan Press (H.K.) Ltd E.m.f. induced in a coil in a changing magnetic field E.m.f. induced in coil Magnetic flux (  ) Laws of Electromagnetic.
Electromagnetic induction Objectives: 1.Describe what happens when a coil of wire is placed in a changing magnetic field. 2.Calculate the magnetic flux.
Topic: Electromagnetic induction
Electromagnetic Induction and Faraday’s Law Chapter 21.
Magnetic Induction 1Physics is Life. Objectives To learn how magnetic fields can produce currents in conductors To understand how this effect is applied.
Chapter 29:Electromagnetic Induction and Faraday’s Law
Chapter 30: Induction and Inductance This chapter covers the following topics: -Faraday’s law of induction -Lenz’s Law -Electric field induced by a changing.
Electromagnetic Induction.  = BA  = BA cos  Magnetic flux: is defined as the product of the magnetic field B and the area A of the.
Induced emf By: Mr. Baughman Created: 28 February 2005.
Electromagnetic Induction and Faraday’s Law
Section 2: Magnetic Induction
Electromagnetic Induction
Electromagnetic Induction
Electromagnetic Induction
Presentation transcript:

Induced EMF

EMF EMF - It is potential difference and is measured in volts (V ).

Induced EMF Electromagnetic Induction - the process of inducing an electric current by suing a changing magnetic field

How is an induced magnetic field related to a magnetic field? - The magnitude of induced EMF is proportional to the rate of change of the magnetic field. The more rapidly the magnetic field changes, the greater the induced EMF.

Induced EMF is related to magnetic flux Flux –means “flow” Magnetic flux – measure of the number of magnetic filed lines that pass through a given area.

Calculating magnetic flux – Φ (phi) Magnetic filed – B crosses a surface area (A), at right angle magnetic flux Φ = magnitude of magnetic field times area Φ = BA

What factors affect magnetic flux, Φ ? Magnetic flux depends on the magnitude of the magnetic field, B, its orientation with respect to a surface, θ, and the area of the surface, A - if magnetic flux is parallel to the surface then Φ = 0 If magnetic flux crosses the surface at an angle θ the formula is : Φ = BA cos θ

Faraday’s law relates magnetic flux and EMF Any change in magnetic flux Φ will induces voltage (emf) to be "induced" in the coil Change in magnetic flux Φ could be produced by: 1-changing the magnetic field strength, 2-moving a magnet toward or away from the coil, 3- moving the coil into or out of the magnetic field, 4- rotating the coil relative to the magnet, etc.

EMF = −N (ΔBA/ Δt) N  number of loops in the coil Δt – time ΔBA = Φ magnetic flux – B is magnetic field – A is area

emf is directly proportional to the change in flux emf is greatest when the change in time Δt is smallest—that is, emf is inversely proportional to Δt A coil has N turns, an emf will be produced that is N times greater than for a single coil, so that emf is directly proportional to N ( number of loops) EMF = −N (ΔBA/ Δt)

Lenz's law Lenz’s law states that an induced current always flow in a direction that opposes the change that cused it. The reason for the negative sign in Faraday’s law: EMF = − N (ΔBA/ Δt) ( - ) Indicates that the induced current opposes the change in magnetic flux.

Bar magnet being moved in a coil the strength of the magnetic field increases in the coil. The current induced in the coil creates another field, in the opposite direction of the bar magnet’s to oppose the increase induction opposes any change in flux

a) Magnet moves into the coil –Current moves counter-clockwise b) Magnet out of coil – current moves clockwise C) Magnet moves out of coil - Which way does the current move?

Faraday's Law