Numeracy Booklet 1. Estimation & Rounding 2. Order of Operations

Slides:



Advertisements
Similar presentations
Numeracy Help 1. Estimation & Rounding 2. Order of Operations
Advertisements

Surface Area and Volume Lesson Intentions Recap on Surface Area and Volume.
MEASUREMENT. Time - Morning = ame.g. 6:30 am - Evening = pme.g. 2:45 pm e.g. Add 2 ½ hours to 7:55 pm 7: hours =9:55 pm 9: min = Useful to.
Mathematics Level 6.
The New Curriculum for Mathematics. Knowing, learning, understanding are not linear... A field of knowledge, such as mathematics, is a territory, and.
Level F 5-Aug-15Created by Mr. Lafferty Maths Dept. Revision of Level D/E Time Calculating Distance Time Distance Speed Calculating.
GCSE Mathematics 4 th of June 2015 (non-calculator) 8 th of June 2015 (calculator) Adding fractions You can’t add them together until the bottoms (denominators)
Year 1: Number I can count reliably to 100. I can count on and back in 1s, 2s, 5s, and 10s from any given number to 100. I can write all numbers in words.
Parents’ Guide ‘Must do’ by the end of Year 1 Number Be able to count on in 2s, 5s and 10s to 100 Know one more and one less than any numbers to 100 Know.
© T Madas.
Maths Test Tips. Place Value Remember where the digits are and what they are worth. Remember the names of the place value columns. The decimal point never.
EL CENTRO COLLEGE Developmental Math 0090 REVIEW ECC by Diana Moore.
Decision Failure!! Don’t Try Try Success!! Don’t get it! Get it!
Chapter 1 Sections 1.3 & 1.4.
Year 8 Key Words.
Numeracy in Science a common approach
Problem Solving Strategies. Estimate Fractions: Fractions: Estimate to 0, ½, 1 Estimate to 0, ½, 1 Decimals: Estimate Decimals: Estimate + - × ÷: Estimate.
Higher Tier - Number revision Contents :Calculator questions Long multiplication & division Best buy questions Estimation Units Speed, Distance and.
Calculating Distance Time Distance Speed Calculating Speed Calculating Time Converting Hour Minutes to Decimal Time Time, Distance and Speed Problems Converting.
Science 10 Motion.
Back Musselburgh Grammar School Numeracy Posters Index Measurements : Converting Weights Measurements: Converting Units of Length Measurements: Converting.
TechConnect Concrete Math.
Key Vocabulary Year 6 Numeracy. Place Value Ascending Descending Approximate Estimate Integer Positive Negative.
Maths Smart Grade 4 © 2012 Alston Publishing House Pte Ltd
Measures of Central Tendency
Pharmacology I Math Review.
STEM AND LEAF DIAGRAMS Don’t forget to order Include a key.
Numbers
Maths Test Top Tips to Avoid the SAT's Trap. Tip – Get the units all the same Change them all into the same units to see which is smallest!
Numbers and Operations Measure- ment GeometryPatterns, Functions, Algebra Data Analysis Probability $100 $200 $300 $400 $500.
Whiteboardmaths.com © 2010 All rights reserved
Maths SMART Grade 5 © 2012 Alston Publishing House Pte Ltd Calculator.
Whiteboardmaths.com © 2004 All rights reserved
Upper and lower bounds starter 28 has been rounded to the nearest whole number. What is the minimum and maximum value?
Measures of Central Tendency Mean – average, add and divide by number of numbers Median – middle number, order from least to greatest & find middle number.
Key Objectives Year 6 Numeracy. Multiply and divide decimals by 10 and 100, and whole numbers by x 100 = = =804 x 10 = Explain.
Year 6 Block A. 6A1 I can solve practical problems that involve number, place value and rounding. I can compare and order number to at least 10,000,000.
Year 4 Block A. 4A1 I can solve number and practical problems that involve place value and rounding with increasingly large positive numbers. I can explain.
General Exam Tips Think Read the question carefully and try to understand the scenario, then think about the Maths you will need to do. Is it perimeter,
Round any whole number to a required degree of accuracy.
Chapter Mass and Volume Mass describes the amount of matter in an object. o Matter – anything that has mass and takes up space. o SI unit for mass.
Number (multiply and divide) perform mental calculations, including with mixed operations and large numbers multiply multi-digit numbers up to 4 digits.
Uncertainty2 Types of Uncertainties Random Uncertainties: result from the randomness of measuring instruments. They can be dealt with by making repeated.
Targeting that Grade C in Mathematics A Simplified Revision Guide St Edmund Campion Mathematics Department.
Foundation GCSE Lecture: Targeting that grade C Mr A. Grant.
Important Facts I need to know Number 5. What is 0.2 as a fraction?
Numeracy Across the Curriculum Toolkit AdditionAddition Subtraction Addition and subtraction of decimalsSubtractionAddition and subtraction of decimals.
UNIT 6 DECIMALS. DECIMAL NUMBERS Decimal numbers are used in situations in which we look for more precision than integers provide. In order to do that,
Mathematics End of Year Expectations. Year 1 Meeting Year 1 Expectations Year 1 Expectations: Number Count reliably to 100 Count on and back in 1s, 2s,
New Year 6 End of year expectations Number and Place Value Read, write, order and compare numbers up to 10,000,000 and determine the value of each digit.
Year 6 Place value & calculation. 6Pv&C1 1. Read and write numbers up to and determine the value of each digit. 5. I understand the purpose of.
Maths Year 3 Autumn 1: Reasoning within 100; Multiplication and division word problems; 3 and 4 times tables; Time Solve practical problems and number.
Fractions/Percentages/Ratio
Converting Fractions into Decimals into Percents & Vice Versa
Multiply frequency by the value Divide this total by total frequency
Chatelherault Primary School
Year 6 Block A.
Place Value and Mental Calculation
Look at the following number:
Numeracy - Procedural *Based on Past NNT Paper - Y7.
Mathematics Revision Guide
Block 1 Level 3 Rounding Percentages Time Length and Area Statistics
Numeracy Across Learning Inverclyde Academy
Decimal Places Write correct to 1 dp = Write 400
Revision Weeks Today you will need: Your book Pen Pencil Ruler
Perimeter, area and volume. A A A A A A Contents S8 Perimeter, area and volume S8.1 Perimeter S8.6 Area of a circle S8.2 Area S8.5 Circumference of a.
Functional Maths Revision
Year 7 Unit 1 Knowledge Organiser PLACE VALUE, DECIMALS & USING SCALES
Presentation transcript:

Numeracy Booklet 1. Estimation & Rounding 2. Order of Operations 3. Negative Numbers 4. Fractions 5. Decimals 6. Percentages 7. Ratio & Proportion 8. Time 9. Measurement 10. Area & Volume 11. Graphs & Charts 12. Averages & Range 13. Probability

Estimation & Rounding Rounding helps estimate answers to calculations and shorten answers that have too many decimal places. Money should always be rounded to two decimal places. Rules for Rounding To round a number, we must first identify the place value to which we want to round. We must then look at the next digit to the right (the “check digit”) - if it is 5 or more round up.   Example 328•045 → 300 to the nearest 100 330 to the nearest 10 328 to the nearest whole number 328•0 to 1 decimal place 328•05 to 2 decimal places Menu Menu

Order of Operations Order of Operations Calculations have to be carried out in a certain order. We can remember this by using the mnemonic BODMAS. BRACKETS  DIVIDE or MULTIPLY  ADD or SUBTRACT Examples 1. 3 + 4 × 6 2. 4 × (2 + 11) 3. 12 + 24 ÷ 3 – 7 = 3 + 24 = 4 × 13 = 12 + 8 - 7 = 27 = 52 = 13 Menu

Negative Numbers 1 Negative Numbers 1 Examples: Adding and Subtracting Negative numbers can occur when using money, temperature, coordinates, sea level, etc. It is sometimes helpful to use a number line. -5 -4 -3 -2 -1 0 1 2 3 4 5 Adding a negative number is the same as subtracting. Subtracting a negative number is the same as adding. Examples: Adding and Subtracting 1. 3 - 7 2. 4 + (-6) 3. 7 – (-12) = -4 = 4 – 6 = 7 + 12 = -2 = 19 Menu

Negative Numbers 2 Negative Numbers 2 Multiplying a positive number by a negative number (and vice versa) gives a negative answer. Multiplying two negative numbers gives a positive answer. Dividing a positive number by a negative number (and vice versa) gives a negative answer. Dividing two negative numbers gives a positive answer. Examples: Multiplying and Dividing 1. 3 × (-6) 2. (-7) × (-4) 3. (-120) ÷ 10 = -18 = 28 = -12 Menu

Fractions Fractions Examples 1. 1/3 of £360 2. 4/7 of 35 kg When finding a fraction of a quantity the rule is “divide by the bottom, times by the top”. Examples 1. 1/3 of £360 2. 4/7 of 35 kg = 360 ÷ 3 = 35 ÷ 7 × 4 = £120 = 20 kg Menu

Decimals 1 Decimals 1 H T U • t’ths h’ths 3 1 4 2 5 7 9 2 6 • 4 7 Our number system works in multiples of 10. Units, tens, hundred and thousands are all very well, but when we consider very small numbers we have to use decimals, such as tenths and hundredths. H T U • t’ths h’ths 3 1 4 2 5 7 9 2 6 • 4 7 2 tens 7 hundredths 6 units 4 tenths Menu

Decimals 1 Decimals 2 Examples 1. 6•2 - 3•16 2. 1•72 × 3 3. 3•68 ÷ 4 When adding and subtracting decimals, calculations should be set out in exactly the same way as for whole numbers. Care should be taken to line up decimal points. Any gaps in the calculation can be filled with a zero. When multiplying and dividing decimals, calculations look exactly the same as for whole numbers. In multiplication the answer usually has the same number of decimal places as in the calculation. Examples 1. 6•2 - 3•16 2. 1•72 × 3 3. 3•68 ÷ 4 6 • 2 0 – 3 • 1 6 3 • 0 4 1 • 7 2 × 3 5 • 1 6 2 0 • 9 2 4 3 • 6 8 3 Menu

Decimals 3 When multiplying decimals by 10 all the digits move one place to the left. Multiplying by 100 moves all digits two places to the left, etc. When dividing decimals by 10 all the digits move one place to the right. Dividing by 100 moves all the digits two places to the right, etc. Examples 1. 31•65 × 10 2. 12•7 × 100 3. 58•32 ÷ 10 4. 9•3 ÷ 100 3 1 • 6 5 × 1 0 = 3 1 6 • 5 1 2 • 7 × 1 0 0 = 1 2 7 0 5 8 • 3 2 ÷ 1 0 = 5 • 8 3 2 9 • 3 ÷ 1 0 0 = 0 • 0 9 3 Menu

Percentages 1 Examples 1. Find 20% of £60 2. 75% of 32 kg Finding a percentage of a quantity without a calculator Some percentages can be dealt with more easily as fractions. 50% = 1/2 20% = 1/5 25% = 1/4 5% = 1/20 75% = 3/4 331/3% = 1/3 10% = 1/10 662/3% = 2/3 In these cases, to find the percentage of a quantity, you would change the percentage to the equivalent fraction and use the rule “divide by the bottom and times by the top”. Examples 1. Find 20% of £60 2. 75% of 32 kg 1/5 of £60 3/4 of 32 = 60 ÷ 5 = 32 ÷ 4 × 3 = £12 = 24 kg Menu

Percentages 2 Examples 1. Find 15% of £80 2. 7% of $300 Finding a percentage of a quantity without a calculator Most percentages can be built up using 1% and 10%. Examples 1. Find 15% of £80 2. 7% of $300 10% of £80 = £8 1% of £300 = $3 5% of £80 = £4 7% of $300 = $3 × 7 So 15% of £80 = £12 = $21 Menu

Percentages 3 Examples 1. Find 38% of £48 2. 7•3% of 120 kg Finding a percentage of a quantity with a calculator To find a percentage, divide the percentage by 100 and multiply by the quantity in the question. Examples 1. Find 38% of £48 2. 7•3% of 120 kg 38 ÷ 100 × 48 7•3 ÷ 100 × 120 = £18•24 = 8•76 kg Menu

Percentages 4 Finding a percentage To convert a test score to a percentage divide the score by the total marks and multiply by 100. Example Max scored 34 out of 61 in a test. Convert his score to a percentage. 34 % score = × 100 61 = 55•7377… = 56% (to nearest whole number) Menu

Percentages 5 Percentage profit/loss To find a percentage profit/loss you divide the actual profit/loss by the starting amount. Multiplying the resulting decimal by 100 gives the percentage profit or loss. Example A house was bought for £80,000. In 2010 it was sold for £90,000. Calculate the percentage increase. Profit = 90,000-80,000 = 10,000 % profit = × 100 Profit Original cost = × 100 10,000 80,000 = 12.5% Menu

Percentages 6 Finding an original amount After a percentage (for example VAT) has been added on to something there is a set process for removing that extra amount. Example A car servicing bill is £480, including VAT at 20%. Calculate the cost excluding VAT. There are two methods: a) Cost + VAT = 120% b) Cost + VAT = 120% = 1•2 1% of cost = 480 ÷ 120 Cost = 480 ÷ 1•2 = £4 = £400. 100% of cost = £400 Menu

Ratio 1 Example The ingredients for a sponge cake are as follows: Ratios can be used to compare different quantities. Example The ingredients for a sponge cake are as follows: 100 grammes of sugar, 100 grammes of margarine, 100 grams of flour and 2 eggs. Write the ratio of eggs to flour. eggs : flour 2 : 100 1 : 50 Menu

Ratio 2 Example (continued) A chef makes more cake than normal. Ratios can be used to compare different quantities. Example (continued) A chef makes more cake than normal. If he uses 6 eggs how many grammes of flour will he need? eggs flour 1 50 6 300 The chef will need 300 grammes of flour. × 6 × 6 Menu

Direct Proportion Example Two related quantities are in direct proportion if an increase in one causes a proportional increase in the other. Example 5 adult tickets at the Pictures cost £27•50. How much would 8 tickets cost? Tickets Cost 5 £27•50 1 £5•50 8 £44•00 ÷ 5 ÷ 5 × 8 × 8 Eight tickets will cost £44•00 Menu

Time 1 Time can be written in “12-hour” or “24-hour” form. Examples Change 4 a.m. to 24 hour time. 0400 hrs Change 10.42 a.m. to 24 hour time. 1042 hrs Change 8 p.m. to 24 hour time. 2000 hrs Change 1.15 p.m. to 24 hour time. 1315 hrs Change 1132 hrs to 12 hour time. 11.32 a.m. Change 2359 hrs to 12 hour time. 11.59 p.m. Change 0600 hrs to 12 hour time. 6 a.m. Menu

Time 2 Example Find the time difference between 0953 hrs and 1102 hrs. Time intervals are easier to find if you split up the calculation. Example Find the time difference between 0953 hrs and 1102 hrs. 1000 1100 1hr 1102 2 mins 0953 7 mins Total Time = 1 hour + 7 mins + 2 mins = 1 hour and 9 mins Menu

Time 3 Examples Change 4•1 hours into hours and minutes. Decimal time needs to be used in calculations. Final answers are stated in hours and minutes. Examples Change 4•1 hours into hours and minutes. 0•1 hours = 0•1 × 60 = 6 minutes. 4•1 hours = 4 hours and 6 minutes. Change 51/3 hours into hours and minutes. 1/3 of an hour = 1/3 of 60 = 20 minutes. 51/3 hours = 5 hours 20 minutes. Change 7 hours 24 minutes into hours (decimal form). 24 minutes = 24 ÷ 60 = 0•4 hours 7 hours 24 minutes = 7•4 hours. Menu

Time 4 Distance, speed and time are related using a set of formulae. D S T To remember a formula, cover up the letter you need to find out. Example A van travels for 2 hours and 15 minutes at an average speed of 48 m.p.h.. Calculate the distance it has travelled. S = 48 m.p.h D = S × T D = ? = 48 × 2•25 T = 2h 15min = 2•25 hrs = 108 miles Menu

Measurement 1 1 cm = 10 mm 1 m = 100 cm 1 km = 1000 m km m cm mm ×1000 ×100 ×10 ÷1000 ÷100 ÷10 Examples Convert 3•2 km to metres. 3•2 × 1000 = 3200 m Convert 2500 mm to cm. 2500 ÷ 10 = 250 cm Menu

Measurement 2 tonne kg g 1 kg = 1000 g 1 tonne = 1000 kg Examples ×1000 ÷1000 1 kg = 1000 g 1 tonne = 1000 kg Examples Convert 9•3 kg to grammes. 9•3 × 1000 = 9300 g Convert 6120 g to kilogrammes. 6120 ÷ 1000 = 6•12 kg Menu

Measurement 3 m³ litre cm³ ml 1 cm³ = 1 ml ×1000 ÷1000 1 cm³ = 1 ml 1000 cm³ = 1000 ml = 1 litre 1000 litres = 1 m³ Examples Convert 1•7 m³ to litres 1•7 × 1000 = 1700 l Convert 3245 cm³ to litres. 3245 ÷ 1000 = 3•245 l Menu

Area & Volume Simple formulae are used to find Area or Volume of 2D and 3D shapes. Area of a rectangle = length × breadth A = lb Area of a triangle = half of base × height A = ½bh Area of a circle = pi × radius × radius A = πr² Volume of a cuboid = length × breadth × height V = lbh Volume of a prism = Area of cross-section × height V = Ah Example Find the area of the triangle shown. 10 cm 3 cm A = ½bh = 0•5 × 10 × 3 = 15 cm² Menu

Graphs & Charts 1 8 6 4 2 Favourite Colour Green Blue Purple Black Bar charts should have a title, even scale and labelled axes. Bars should be equal widths and have a gap between each one. 8 6 4 2 Favourite Colour Green Blue Purple Black Yellow Other Frequency Menu

How do you travel to work? Graphs & Charts 2 Reading information from a Pie Chart (with divisions) Pie charts are used to display a range of information, for example the results from a survey. Example Sixty people were asked how they travel to work. The pie chart on the right was produced. Since there are twelve divisions on the pie chart then each one must be worth five (60 ÷ 12 = 5). So 15 people caught the bus, 20 walked, 20 drove and 5 cycled. How do you travel to work? Walk Car Bus Bike Menu

Graphs & Charts 3 Reading information from a Pie Chart (with angles) If angles are marked in the centre of a pie chart, you can use them to interpret the pie chart. Remember the angles will add up to 360° in total, so each angle represents a fraction of 360°. Example 90 people were asked who they voted for in a general election. The pie chart on the right was produced. How many people voted for Conservative? × 90 = 28 people Who did you vote for? 112 360 Menu

Graphs & Charts 4 Constructing a Pie Chart View results as a fraction of 360° and use the angles to construct the sectors. Example 90 people were asked who they voted for in a general election. The results were as follows: Who did you vote for? Party No. of votes Angle Lib. Dem. 48 48/90 × 360° = 192° Labour 11 11/90 × 360° = 44° Conservative 28 28/90 × 360° = 112° Others 3 3/90 × 360° = 12° Menu

Averages & Range There are three types of average. Mean: what people would usually think of as “average”. For the list, find the total and divide by how many numbers there are. Median: the middle number in a list that is in numerical order. Mode: the most common number in a list. The range is used as a basic measure of how spread out data is. It is the difference between the highest and lowest numbers in a list. Example: Consider the list of numbers: 5, 3, 7, 6, 7. Mean = 28 ÷ 5 = 5•6 Median: list is 3, 5, 6, 7, 7. Middle number is 6 so median = 6. Mode: 7 is the most common number so mode = 7. Range = 7 – 3 = 4 Menu

Probability Probability is measured on a scale from zero to one, using decimals, fractions or percentages. The probability of an event occurring is found by: P(event) = Example: When a dice is rolled what is the probability of rolling a 5 or 6? P(5 or 6) = = impossible certain even chance 1 2 no. of favourable outcomes no. of possible outcomes 2 1 6 3 Menu