Chapter 1 Digital Systems and Binary Numbers

Slides:



Advertisements
Similar presentations
A digital system is a system that manipulates discrete elements of information represented internally in binary form. Digital computers –general purposes.
Advertisements

Chapter 1 Digital Systems and Numbers System
Chapter 1 Binary Systems 1-1. Digital Systems
Digital Fundamentals Floyd Chapter 2 Tenth Edition
Overview Digital Systems, Computers, and Beyond
SYEN 3330 Digital Systems Jung H. Kim Chapter 1 1 SYEN 3330 Digital Systems Chapter 1.
Overview Digital Systems, Computers, and Beyond
Overview Digital Systems, Computers, and Beyond
VIT UNIVERSITY1 ECE 103 DIGITAL LOGIC DESIGN CHAPTER I NUMBER SYSTEMS AND CODES Reference: M. Morris Mano & Michael D. Ciletti, "Digital Design", Fourth.
A digital system is a system that manipulates discrete elements of information represented internally in binary form. Digital computers –general purposes.
Digital Computers and Information
Information Representation and Number Systems BIL- 223 Logic Circuit Design Ege University Department of Computer Engineering.
Mantıksal Tasarım – BBM231 M. Önder Efe
Introduction to Digital Logic Design
Digital Systems and Binary Numbers
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Chapter 1 1 CPE 231 Digital Logic Introduction Dr. Gheith Abandah [Adapted from the slides of the textbook of Mano and Kime]
ACOE1611 Data Representation and Numbering Systems Dr. Costas Kyriacou and Dr. Konstantinos Tatas.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 1 – Digital Systems and Information Logic.
EKT 121 / 4 ELEKTRONIK DIGIT 1 CHAPTER 1 : INTRODUCTION.
Chapter 1 1 CPE 231 Digital Logic Introduction Dr. Gheith Abandah [Adapted from the slides of the textbook of Mano and Kime]
Logic and Digital System Design - CS 303
1 Digital Systems and Binary Numbers EE 208 – Logic Design Chapter 1 Sohaib Majzoub.
EE2174: Digital Logic and Lab Professor Shiyan Hu Department of Electrical and Computer Engineering Michigan Technological University CHAPTER 2 Number.
ECEN2102 Digital Logic Design Lecture 1 Numbers Systems Abdullah Said Alkalbani University of Buraimi.
1.7 BINARY CODES BCD Code (Binary –Coded Decimal ) BCD Addition
Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 2 – Binary Codes.
CS151 Introduction to Digital Design
Logic Design Dr. Yosry A. Azzam. Binary systems Chapter 1.
مدار منطقي مظفر بگ محمدي Course Structure & Grading Homework: 25% Midterm: 30% Final:50% There is 5% extra! ( =105!) Textbook:
Number systems & Binary codes MODULE 1 Digital Logic Design Ch1-2 Outline of Chapter 1  1.1 Digital Systems  1.2 Binary Numbers  1.3 Number-base Conversions.
CE1111 :Digital Logic Design lecture 01 Introduction Dr. Atef Ali Ibrahim.
1 EENG 2710 Chapter 1 Number Systems and Codes. 2 Chapter 1 Homework 1.1c, 1.2c, 1.3c, 1.4e, 1.5e, 1.6c, 1.7e, 1.8a, 1.9a, 1.10b, 1.13a, 1.19.
1.8 Binary Storage and Registers
AEEE2031 Data Representation and Numbering Systems.
Digital Systems and Binary Numbers
Digital Circuits Text Book –M. M. Mano, "Digital Design," 3rd Ed., Prentice Hall Inc., Reference –class notes Grade –quizzes:15% –mid-term:27.5%
Signed Binary Numbers Arithmetic Subtraction – In 2’s-complement form: Example: 1.Take the 2’s complement of the subtrahend (including the sign bit) and.
Chapter 1 Digital Systems and Binary Numbers
1 CHAPTER 1 DIGITAL SYSTEMS AND BINARY NUMBERS 2 O UTLINE OF C HAPTER Digital Systems 1.2 Binary Numbers 1.3 Number-base Conversions 1.4 Octal.
Digital Fundamentals Tenth Edition Floyd Chapter 2 © 2008 Pearson Education.
MECH1500 Chapter 3.
D IGITAL C IRCUITS Book Title: Digital Design Edition: Fourth Author: M. Morris Mano 1.
ECE/CS 352 Digital System Fundamentals© T. Kaminski & C. Kime 1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 1 Tom Kaminski & Charles R.
Chapter 1: Binary Systems
CPEN Digital Logic Design Binary Systems Spring 2004 C. Gerousis © Digital Design 3 rd Ed., Mano Prentice Hall.
Chapter 1 : Introduction to Binary Systems 1.1. Introduction to Digital Systems 1.2. Binary Numbers 1.3. Number Base Conversion 1.4. Octal and Hexadecimal.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 1 – Digital Systems and Information Logic.
Overview 1-1 Information Representation
Lecture 1.2 (Chapter 1) Prepared by Dr. Lamiaa Elshenawy
BINARY SYSTEMS ENGR. KASHIF SHAHZAD 1. BINARY NUMBERS 1/2 Internally, information in digital systems is of binary form groups of bits (i.e. binary numbers)
Digital Logic Design Ch1-1 Chapter 1 Digital Systems and Binary Numbers Mustafa Kemal Uyguroğlu Digital Logic Design I.
Chapter 1 – Digital Systems and Information Logic and Computer Design Fundamentals.
Number Systems. The position of each digit in a weighted number system is assigned a weight based on the base or radix of the system. The radix of decimal.
Digital logic COMP214  Lecture 2 Dr. Sarah M.Eljack Chapter 1 1.
Number Systems By, B. R. Chandavarkar CSE Dept., NITK, Surathkal.
Chapter 1 Digital Systems and Binary Numbers
Logic and Computer Design Fundamentals
Digital Logic and Design
Digital Systems and Binary Numbers
CHAPTER 1 : INTRODUCTION
Digital Systems and Binary Numbers
Chapter 1 Digital Systems and Binary Numbers
SYEN 3330 Digital Systems Chapter 1 SYEN 3330 Digital Systems.
BEE1244 Digital System and Electronics BEE1244 Digital System and Electronic Chapter 2 Number Systems.
INTRODUCTION TO LOGIC DESIGN Chapter 1 Digital Systems and Binary Numbers gürtaçyemişçioğlu.
Overview Digital Systems and Computer Systems
Overview Digital Systems and Computer Systems
Digital Systems and Binary Numbers
Presentation transcript:

Chapter 1 Digital Systems and Binary Numbers 授課教師: 張傳育 博士 (Chuan-Yu Chang Ph.D.) E-mail: chuanyu@yuntech.edu.tw Tel: (05)5342601 ext. 4337 Office: EB212 http://MIPL.yuntech.edu.tw

Digital Logic Design Text Book Reference Grade M. M. Mano and M. D. Ciletti, “Digital Design," 4th Ed., Pearson Prentice Hall, 2007. Reference class notes Grade Quizzes: Mid-term: Final: Appearance:

Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching exchanges digital camera electronic calculators, PDA's digital TV Discrete information-processing systems manipulate discrete elements of information

Signal An information variable represented by physical quantity For digital systems, the variable takes on discrete values Two level, or binary values are the most prevalent values  Binary values are represented abstractly by: digits 0 and 1 words (symbols) False (F) and True (T) words (symbols) Low (L) and High (H) and words On and Off. Binary values are represented by values or ranges of values of physical quantities

Signal Example – Physical Quantity: Voltage Threshold Region The HIGH range typically corresponds to binary 1 and LOW range to binary 0. The threshold region is a range of voltages for which the input voltage value cannot be interpreted reliably as either a 0 or a 1.

Signal Examples Over Time Continuous in value & time Analog Digital Discrete in value & continuous in time Asynchronous Discrete in value & time Synchronous

A Digital Computer Example Inputs: Keyboard, mouse, modem, microphone Outputs: CRT, LCD, modem, speakers Answer: Part of specification for a PC is in MHz. What does that imply? A clock which defines the discrete times for update of state for a synchronous system. Not all of the computer may be synchronous, however. Synchronous or Asynchronous?

Binary Numbers and Binary Coding Information Types Numeric Must represent range of data needed Represent data such that simple, straightforward computation for common arithmetic operations Tight relation to binary numbers Non-numeric Greater flexibility since arithmetic operations not applied. Not tied to binary numbers

Number of Elements Represented Given n digits in radix r, there are rn distinct elements that can be represented. But, you can represent m elements, m < rn Examples: You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11). You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000). This second code is called a "one hot" code.

Non-numeric Binary Codes Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2n binary numbers. Example: A binary code for the seven colors of the rainbow Code 100 is not used Color Binary Number 000 001 010 011 101 110 111 Red Orange Yellow Green Blue Indigo Violet

Binary Numbers Decimal number … a5a4a3a2a1.a1a2a3… Base or radix Power … a5a4a3a2a1.a1a2a3… Decimal point Example: General form of base-r system Coefficient: aj = 0 to r  1

Binary Numbers Example: Base-2 number Example: Base-5 number

Converting Binary to Decimal To convert to decimal, use decimal arithmetic to form S (digit × respective power of 2). Example:Convert 110102 to N10:   Powers of 2: 43210 110102 => 1 X 24 = 16 + 1 X 23 = 8 + 0 X 22 = 0 + 1 X 21 = 2 + 0 X 20 = 0 2610

220 (1,048,576) is Mega, denoted "M" Binary Numbers Example: Base-2 number Special Powers of 2 210 (1024) is Kilo, denoted "K" 220 (1,048,576) is Mega, denoted "M" 230 (1,073, 741,824)is Giga, denoted "G" Powers of two Table 1.1

Arithmetic operation Arithmetic operations with numbers in base r follow the same rules as decimal numbers.

Binary Arithmetic Single Bit Addition with Carry Multiple Bit Addition Single Bit Subtraction with Borrow Multiple Bit Subtraction Multiplication BCD Addition

Single Bit Binary Addition with Carry

Multiple Bit Binary Addition Extending this to two multiple bit examples: Carries 0 0 Augend 01100 10110 Addend +10001 +10111 Sum Note: The 0 is the default Carry-In to the least significant bit. Carries 00000 01100 Augend 01100 10110 Addend +10001 +10111 Sum 11101 101101

Binary Arithmetic Subtraction Addition Multiplication Minuend: 101101 Subtrahend: 100111 Difference: 000110 Augend: 101101 Addend: +100111 Sum: 1010100 Multiplication

Number-Base Conversions Name Radix Digits Binary 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9 Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F The six letters (in addition to the 10 integers) in hexadecimal represent: 10, 11, 12, 13, 14, and 15, respectively.

Number-Base Conversions Example1.1 Convert decimal 41 to binary. The process is continued until the integer quotient becomes 0.

Number-Base Conversions  The arithmetic process can be manipulated more conveniently as follows:

Number-Base Conversions Example 1.2 Convert decimal 153 to octal. The required base r is 8. Example1.3 Convert (0.6875)10 to binary. The process is continued until the fraction becomes 0 or until the number of digits has sufficient accuracy.

Number-Base Conversions Example1.3  To convert a decimal fraction to a number expressed in base r, a similar procedure is used. However, multiplication is by r instead of 2, and the coefficients found from the integers may range in value from 0 to r  1 instead of 0 and 1.

Number-Base Conversions Example1.4 Convert (0.513)10 to octal.  From Examples 1.1 and 1.3: (41.6875)10 = (101001.1011)2  From Examples 1.2 and 1.4: (153.513)10 = (231.406517)8

Octal and Hexadecimal Numbers  Numbers with different bases: Table 1.2.

Octal and Hexadecimal Numbers  Conversion from binary to octal can be done by positioning the binary number into groups of three digits each, starting from the binary point and proceeding to the left and to the right.  Conversion from binary to hexadecimal is similar, except that the binary number is divided into groups of four digits:  Conversion from octal or hexadecimal to binary is done by reversing the preceding procedure.

Complements  There are two types of complements for each base-r system: the radix complement and diminished radix complement. the r's complement and the second as the (r  1)'s complement. ■ Diminished Radix Complement Example:  For binary numbers, r = 2 and r – 1 = 1, so the 1's complement of N is (2n  1) – N. Example:

Complements (cont.) ■ Radix Complement The r's complement of an n-digit number N in base r is defined as rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r  1) 's complement, we note that the r's complement is obtained by adding 1 to the (r  1) 's complement, since rn – N = [(rn  1) – N] + 1. Example: Base-10 The 10's complement of 012398 is 987602 The 10's complement of 246700 is 753300 Example: Base-10 The 2's complement of 1101100 is 0010100 The 2's complement of 0110111 is 1001001

Complements (cont.) ■ Subtraction with Complements The subtraction of two n-digit unsigned numbers M – N in base r can be done as follows:

Complements (cont.) Example 1.5 Using 10's complement, subtract 72532 – 3250. Example 1.6 Using 10's complement, subtract 3250 – 72532 There is no end carry. Therefore, the answer is – (10's complement of 30718) =  69282.

Complements (cont.) Example 1.7 Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X – Y and (b) Y  X by using 2's complement. There is no end carry. Therefore, the answer is Y – X =  (2's complement of 1101111) =  0010001.

Complements (cont.)  Subtraction of unsigned numbers can also be done by means of the (r  1)'s complement. Remember that the (r  1) 's complement is one less then the r's complement. Example 1.8 Repeat Example 1.7, but this time using 1's complement. There is no end carry, Therefore, the answer is Y – X =  (1's complement of 1101110) =  0010001.

Signed Binary Numbers  To represent negative integers, we need a notation for negative values. It is customary to represent the sign with a bit placed in the leftmost position of the number. The convention is to make the sign bit 0 for positive and 1 for negative. Example:  Table 3 lists all possible four-bit signed binary numbers in the three representations.

Signed Binary Numbers (cont.)

Signed Binary Numbers (cont.) ■ Arithmetic Addition The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude. The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits. A carry out of the sign-bit position is discarded. Example:

Signed Binary Numbers (cont.) ■ Arithmetic Subtraction  In 2’s-complement form: Take the 2’s complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit). A carry out of sign-bit position is discarded. Example: ( 6)  ( 13) (11111010  11110011) (11111010 + 00001101) 00000111 (+ 7)

Binary Coded Decimal (BCD) The BCD code is the 8,4,2,1 code. This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number, but only encodes the first ten values from 0 to 9. Example: 1001 (9) = 1000 (8) + 0001 (1) How many “invalid” code words are there? What are the “invalid” code words? 6 Answer 1: 6 Answer 2: 1010, 1011, 1100, 1101, 1110, 1111 1010, 1011, 1100, 1101, 1110, 1111

Binary Codes ■ BCD Code A number with k decimal digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9. A BCD number greater than 10 looks different from its equivalent binary number, even though both contain 1's and 0's. Moreover, the binary combinations 1010 through 1111 are not used and have no meaning in BCD.

Warning: Conversion or Coding? Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a BINARY CODE.  1310 = 11012 (This is conversion)  13  0001|0011 (This is coding)

BCD Arithmetic Given a BCD code, we use binary arithmetic to add the digits: 8 1000 Eight +5 +0101 Plus 5 13 1101 is 13 (> 9) Note that the result is MORE THAN 9, so must be represented by two digits! To correct the digit, subtract 10 by adding 6 modulo 16. 8 1000 Eight +5 +0101 Plus 5 13 1101 is 13 (> 9) +0110 so add 6 carry = 1 0011 leaving 3 + cy 0001 | 0011 Final answer (two digits) If the digit sum is > 9, add one to the next significant digit

Binary Codes ■ BCD Addition Example: Consider decimal 185 and its corresponding value in BCD and binary: ■ BCD Addition

Binary Codes ■ Decimal Arithmetic Example: Consider the addition of 184 + 576 = 760 in BCD: ■ Decimal Arithmetic

BCD Addition Example Add 2905BCD to 1897BCD showing carries and digit corrections. 0001 1000 1001 0111 + 0010 1001 0000 0101 0011 10001 1001 1100 +0110 +0001 +0110 +0001 1 1 1 0 0001 1000 1001 0111 + 0010 1001 0000 0101 0100 10010 1010 1100 + 0000+ 0110+ 0110+ 0110 0100 1000 0000 0010 10111 1010 10010 0100 +0001 +0110 4 8 2 11000 10000

Binary Codes ■ Other Decimal Codes

Binary Codes ■ Gray Code 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

Gray Code What special property does the Gray code have in relation to adjacent decimal digits? Decimal 8,4,2,1 Gray 0000 0000 1 0001 0001 2 0010 0011 3 0011 0010 4 0100 0110 5 0101 0111 6 0110 0101 7 0111 0100 8 1000 1100 Answer: As we “counts” up or down in decimal, the code word for the Gray code changes in only one bit position as we go from decimal digit to digit including from 9 to 0. 9 1001 1101

Does this special Gray code property have any value? Gray Code (Continued) Does this special Gray code property have any value? An Example: Optical Shaft Encoder B 111 110 000 001 010 011 100 101 1 2 (a) Binary Code for Positions 0 through 7 G (b) Gray Code for Positions 0 through 7 Yes, as illustrated by the example that followed.

Binary Codes ■ ASCII Character Code

Binary Codes ■ ASCII Character Code

American Standard Code for Information Interchange ASCII Character Codes American Standard Code for Information Interchange A popular code used to represent information sent as character-based data. It uses 7-bits to represent: 94 Graphic printing characters. 34 Non-printing characters Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return) Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas). (Refer to Table 1.7)

ASCII Properties ASCII has some interesting properties: Digits 0 to 9 span Hexadecimal values 3016 to 3916 . Upper case A - Z span 4116 to 5A16 . Lower case a - z span 6116 to 7A16 . Lower to upper case translation (and vice versa) occurs by flipping bit 6. Delete (DEL) is all bits set, a carryover from when punched paper tape was used to store messages. Punching all holes in a row erased a mistake!

Binary Codes ■ Error-Detecting Code To detect errors in data communication and processing, an eighth bit is sometimes added to the ASCII character to indicate its parity. A parity bit is an extra bit included with a message to make the total number of 1's either even or odd. Example: Consider the following two characters and their even and odd parity:

Binary Codes ■ Error-Detecting Code Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors. A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1’s odd or even. Parity can detect all single-bit errors and some multiple-bit errors. A code word has even parity if the number of 1’s in the code word is even. A code word has odd parity if the number of 1’s in the code word is odd.

4-Bit Parity Code Example Fill in the even and odd parity bits: The codeword "1111" has even parity and the codeword "1110" has odd parity. Both can be used to represent 3-bit data. Even Parity Odd Parity Message Message Parity - Parity - 1 000 000 - - 001 001 - 1 - 010 010 - 1 - 011 011 - - 1 100 100 - - 1 101 101 - - 1 110 110 - 1 Even Parity Bits: 0, 1, 1, 0, 1, 0, 0, 1 Odd Parity Bits: 1, 0, 0, 1, 0, 1, 1, 0 - 111 111 - 1 -

UNICODE extends ASCII to 65,536 universal characters codes For encoding characters in world languages Available in many modern applications 2 byte (16-bit) code words See Reading Supplement – Unicode on the Companion Website http://www.prenhall.com/mano

Binary Storage and Registers  A binary cell is a device that possesses two stable states and is capable of storing one of the two states.  A register is a group of binary cells. A register with n cells can store any discrete quantity of information that contains n bits. n cells 2n possible states A binary cell two stable state store one bit of information examples: flip-flop circuits, ferrite cores, capacitor A register a group of binary cells AX in x86 CPU Register Transfer a transfer of the information stored in one register to another one of the major operations in digital system an example

Transfer of information

The other major component of a digital system circuit elements to manipulate individual bits of information

Binary Logic ■ Definition of Binary Logic  Binary logic consists of binary variables and a set of logical operations. The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: 1 and 0, There are three basic logical operations: AND, OR, and NOT.

Binary Logic ■ The truth tables for AND, OR, and NOT are given in Table 1.8.

Binary Logic ■ Logic gates  Example of binary signals

Binary Logic ■ Logic gates  Graphic Symbols and Input-Output Signals for Logic gates: Fig. 1.4 Symbols for digital logic circuits Fig. 1.5 Input-Output signals for gates

Binary Logic ■ Logic gates  Graphic Symbols and Input-Output Signals for Logic gates: Fig. 1.6 Gates with multiple inputs