UNNOFIT inversion V. Bommier, J. Rayrole, M. Martínez González, G. Molodij Paris-Meudon Observatory (France) THEMIS Atelier "Inversion et transfert multidimensionnel",

Slides:



Advertisements
Similar presentations
Polarimetric shapes of spectral lines in solar observations Egidio Landi Degl’Innocenti Dipartimento di Fisica e Astronomia Università di Firenze, Italia.
Advertisements

2006/4/17-20 Extended 17 th SOT meeting Azimuth ambiguity resolution from dBz/dz M. Kubo (ISAS/JAXA), K. Shimada (University of Tokyo), K. Ichimoto, S.
SDO/HMI multi-height velocity measurements Kaori Nagashima (MPS) Collaborators: L. Gizon, A. Birch, B. Löptien, S. Danilovic, R. Cameron (MPS), S. Couvidat.
Asteroid’s Thermal Models AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 Budi Dermawan.
Learning from spectropolarimetric observations A. Asensio Ramos Instituto de Astrofísica de Canarias aasensio.github.io/blog.
August 22, 2006IAU Symposium 239 Observing Convection in Stellar Atmospheres John Landstreet London, Canada.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Solar Feature Catalogues S Zharkov, V V Zharkova, S S Ipson, A.Benkhalil, N.Fuller, J. Aboudarham.
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the photosphere we can observe flux.
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the photosphere we can observe flux.
Andreas Lagg MPI for Solar System Research Katlenburg-Lindau, Germany
Andreas Lagg, MPS & IMaX and Sunrise team 2nd Sunrise Science Meeting, May , Freiburg TexPoint fonts used in EMF. Read the TexPoint manual before.
Aspects of Conditional Simulation and estimation of hydraulic conductivity in coastal aquifers" Luit Jan Slooten.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
Alfvén Waves in the Solar Corona S. Tomczyk, S. Mclntosh, S. Keil, P. Judge, T. Schad, D. Seeley, J. Edmondson Science, Vol. 317, Sep., 2007.
METO 621 Lesson 5. Natural broadening The line width (full width at half maximum) of the Lorentz profile is the damping parameter, . For an isolated.
Multiheight Analysis of Asymmetric Stokes Profiles in a Solar Active Region Na Deng Post-Doctoral Researcher at California State University Northridge.
Face Recognition Using Neural Networks Presented By: Hadis Mohseni Leila Taghavi Atefeh Mirsafian.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Statistical properties of current helicity and twist distribution in the solar cycle by high resolution data from SOT/SP on board Hinode K. Otsuji 1),
Modeling the Solar EUV irradiance
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the solar photosphere we can observe.
M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School.
EISCAT Radar Summer School 15th-26th August 2005 Kiruna
R. K. Ulrich 1 · L. Bertello 1 · J. E. Boyden 1 · L. Webster 1 Interpretation of Solar Magnetic Field Strength Observations 1 Department of Physics and.
Blue: Histogram of normalised deviation from “true” value; Red: Gaussian fit to histogram Presented at ESA Hyperspectral Workshop 2010, March 16-19, Frascati,
2005/11/086th Solar-B Science Supersonic downflows in the photosphere discovered in sunspot moat regions T. Shimizu (ISAS/JAXA, Japan),
Standard DEM: Consider a imaging instrument with M EUV filters (for the EUVI Fe bands M = 3). The measured intensity in one image pixel is given by DEM.
Magnetic Correspondence between Moving Magnetic Features and Penumbral Magnetic Fields M. Kubo and T. Shimizu ISAS/JAXA - The 6th Solar-B Science Meeting.
Spicule observed in He Å Solar seminar in 2009 April 20 Short : Tetsu Anan HAZEL Bueno et al Nuño et al , 2, 3,
Bayesian Inversion of Stokes Profiles A.Asensio Ramos (IAC) M. J. Martínez González (LERMA) J. A. Rubiño Martín (IAC) Beaulieu Workshop ( Beaulieu sur.
A. Lagg - Abisko Winter School 1. A. Lagg - Abisko Winter School 2 Why Hinode?  spectra are easier to interpret than, e.g. CRISP (continuous WL coverage)
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
New MSDP improvements Advances and prospects P. Mein, MSDP workshop, Tarbes 2006 THEMIS - New CCD cameras - Linear polarization of prominences - New line.
19 Oct 2005SPW41 Penumbral MMFs S Jaeggli (UHawaii) C Henney (NSO) S Luszcz (Cornell) S Walton (CSUN/SFO)
Multi-level observations of magneto- acoustic cut-off frequency Ding Yuan Department of Physics University of Warwick Coventry CV4 7AL, UK
1 Magnetogram from the Filtergraph (FG) observation K.Ichimoto, M.Kubo, Y.Katsukawa and SOT Team SOT#
Zasshikai S.UeNo MDI Measurement Errors: The Magnetic Perspective Y. Liu & A.A. Norton SOI-Technical Note Zasshikai S.UeNo.
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
Differences between central and peripheral umbral dots Michal Sobotka 1 Jan Jurcak 2,1 SXT seminar, 2008/10/10, NAOJ Astronomical Institute, Academy of.
Azimuth disambiguation of solar vector magnetograms M. K. Georgoulis JHU/APL Johns Hopkins Rd., Laurel, MD 20723, USA Ambiguity Workshop Boulder,
SQUV & PCA: reduction tools for THÈMIS by A. Sainz Dald & A. López Ariste.
Comparison of time- distance and holography Junwei Zhao and Alexander G. Kosovichev W. W. Hansen Experimental Physics Laboratory, Stanford University,
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
Inversions based on ME atmospheres Stokes inversions beyond ME atmospheres Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC) Granada, Spain.
1. Twist propagation in Hα surges Patricia Jibben and Richard C. Canfield 2004, ApJ, 610, Observation of the Molecular Zeeman Effect in the G Band.
A multiline LTE inversion using PCA Marian Martínez González.
Colin Folsom (Armagh Observatory).  Read input  Calculate line components (Zeeman splitting)  Calculate continuum opacity (per window, per atmospheric.
Measurements of Vector Magnetic Fields
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
Horizontal Flows in Active Regions from Multi-Spectral Observations of SDO Sushant Tripathy 1 Collaborators K. Jain 1, B. Ravindra 2, & F. Hill 1 1 National.
NLTE polarized lines and 3D structure of magnetic fields Magnetic fields cross canopy regions, not easily investigated by extrapolations, between photosphere.
Spectral Line Performance Using Inversion Codes J. Graham, A. Norton, S. Tomczyk, A. Lopez Ariste, H. Socas-Navarro, B. Lites NCAR/HAO Goal: Characterize.
SHINE 2008 Vector Magnetic Fields from the Helioseismic and Magnetic Imager Steven Tomczyk (HAO/NCAR) Juan Borrero (HAO/NCAR and MPS)
2006/4/17-20 Extended 17 th SOT meeting M. Kubo (JAXA/ISAS), K. Ichimito, Y. Katsukawa (NAOJ), and SOT-team Comparison of FG and SP data from Sun test.
Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril.
A Method for Solving 180 Degree Ambiguity in Observed Solar Transverse Magnetic Field Huaning Wang National Astronomical Observatories Chinese Academy.
SOLIS-VSM Magnetic Synoptic Maps
Chromospheric Evershed flow
Polarization in spectral lines
A new technique of detection and inversion
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
S/N and Polarimetry With HMI
PRISMS – one of the e.g. of optical instrumentation
The Moat Flow Observed in Two Different TRACE-Filters
Observations of emerging and submerging regions with ASP and Solar-B
Soothing Massage of HMI Magnetic Field Data
Contents Introduction to the inversion code
The structure and evolution of stars
106.13: A Makeover for HMI Magnetic Field Data
Presentation transcript:

UNNOFIT inversion V. Bommier, J. Rayrole, M. Martínez González, G. Molodij Paris-Meudon Observatory (France) THEMIS Atelier "Inversion et transfert multidimensionnel", Beaulieu sur mer, France, 8-10 Octobre 2007

UNNOFIT INVERSION  presentation of UNNOFIT, accuracy  Comparison UNNOFIT 8 parameters / UNNOFIT 9 parameters  Initialisation of UNNOFIT with PCA results  Comparison UNNOFIT / SIR results (M. Martínez González)  Introduction of a velocity gradient (J. Rayrole, G. Molodij)

UNNOFIT Landolfi, M., Landi Degl'Innocenti, E., Arena, P., 1984, Solar Physics 93, 269 Unno-Rachkowsky analytical solution in a Milne-Eddington atmosphere Marquardt algorithm to reach the minimum  2 (Harvey et al., 1972, Auer et al., 1977)  Magneto-optical and damping effects (Landolfi & Landi Degl'Innocenti, 1982) typical INTRANETWORK low polarized pixel

UNNOFIT Present work: introduction of a 9 th fitted parameter: the magnetic filling factor   Skumanich & Lites (1987): I nm constant (average of the observation)  our work: same physical conditions (except the magnetic field) for I nm and I m I nm varies throughout the map (umbra, penumbra, plages, faculæ, quiet, etc...) 8 fitted parameters: 1 – the line strength  0 2 – the Zeeman splitting  H 3 – the Doppler width  D 4 – the damping parameter of the Voigt function  5 – one single parameter b describing the Milne-Eddington atmosphere 6 – the line central wavelength 7 & 8 – the field inclination and azimuth angles

UNNOFIT minimum of  per pixel for two varying parameters: – the magnetic field intensity – the magnetic filling factor full scale: the polarimetric sensitivity

UNNOFIT minimum of  per pixel for two varying parameters: – the magnetic field inclination – the magnetic field azimuth full scale: the polarimetric sensitivity

noise level measurement by wavelet filtering technique and determination of the standard deviation

1 line (in the visible range)  Determination of the local average magnetic field strength test: comparison known input vs inverted output: the filling factor  and the field strength B are not separately recovered, but their product  B, the local average magnetic field strength, is recovered.

histograms of the differences inverted-initial (UNNOFIT accuracy) (input)  B >= 45G NETWORK (input)  B < 45G INTER- NETWORK

comparison UNNOFIT 8 parameters / UNNOFIT 9 parameters UNNOFIT 8 parameters (no filling factor) B lim = 100 Gauss UNNOFIT 9 parameters (with filling factor) B lim = 20 Gauss

Accuracy

Orders of magnitude no filling factor (  = 1) with filling factor (   1)

comparison UNNOFIT 8 parameters / UNNOFIT 9 parameters UNNOFIT 8 parameters (no filling factor) UNNOFIT 9 parameters (with filling factor)

comparison UNNOFIT 8 parameters / UNNOFIT 9 parameters UNNOFIT 8 parameters (no filling factor) UNNOFIT 9 parameters (with filling factor)

Symmetrisation of the profiles beam exchange: recenter (spectrally) the I+X and I–X profiles obtained in the same channel at different times (for Q and U) the idea is that the l.o.s. velocity has changed between the two times the result is symmetrised profiles

comparison unsymmetrised / symmetrised unsymmetrised (no recentering before subtraction) symmetrised (with recentering before subtraction) QUIET SUN 25 July 2007 TIP-TILT ON pixel size 0.2 arcsec

INITIALISATION OF UNNOFIT WITH PCA RESULTS data: active region, 6 November 2004 provided by BASS2000 (codes runned by BASS2000): – polarimetric analysis results SQUV code A. Sainz  Stokes profiles (submitted to UNNOFIT inversion) – PCA analysis results A. Lopez's code  magnetic field vector and filling factor

INITIALISATION OF UNNOFIT WITH PCA RESULTS initialisation (and acceleration) of UNNOFIT: 2 proposed methods – initialisation with PCA analysis results ("PCA initialisation") – initialisation with results of neighbour pixels ("neighbour initialisation)

INITIALISATION OF UNNOFIT WITH PCA RESULTS PCA initialisation neighbour initialisation difference with the "normal" (i.e., non accelerated) solution

INITIALISATION OF UNNOFIT WITH PCA RESULTS PCA initialisation 22.0% of "bad" pixels neighbour initialisation 1.2% of "bad" pixels proportion of "bad" pixels where the magnetic field vector differs with: – more than 25% in field strength – or more than 20 degrees in inclination or azimuth angle with respect to the "normal" (i.e., non accelerated) solution:

COMPARISON UNNOFIT/PCA data: active region, 6 November 2004, provided by BASS2000 (codes runned by BASS2000): – polarimetric analysis results: SQUV code A. Sainz  Stokes profiles (submitted to UNNOFIT inversion) – PCA analysis results: A. Lopez's code  magnetic field vector and filling factor UNNOFIT PCA

COMPARISON UNNOFIT/PCA UNNOFIT PCA inclination angle with the horizontal plane

COMPARISON UNNOFIT/PCA data: active region, 6 November 2004, provided by BASS2000 (codes runned by BASS2000): – polarimetric analysis results: SQUV code A. Sainz  Stokes profiles (submitted to UNNOFIT inversion) – PCA analysis results: A. Lopez's code  magnetic field vector and filling factor

COMPARISON UNNOFIT/SIR As UNNOFIT provides only the product  B, SIR was runned with: – one signe line Fe I Å – one single magnetic component (homogeneous field) – 11 free parameters: – the temperature (5 nodes) – the microturbulent velocity – the macroturbulent velocity – the line-of-sight velocity – the magnetic field strength – the magnetic field inclination and azimuth angles

UNNOFIT/SIR Comparison : Sunspot field strength inclinationazimuth differences in

UNNOFIT/SIR Comparison : Quiet Sun inclinationazimuth differences in field strength

Validity of the Milne-Eddington Approximation logarithmic linear Linearity of the source function at   1 NLTE computation of the source function in a VALC atmosphere Fe I Å opacity

VELOCITY GRADIENT Observation by J. RAYROLE concerns the line bisector I+V I-V theory: the 2 line bisectors of I+V and I-V are symmetrical I+V I-V observation by J. Rayrole: the 2 line bisectors of I+V and I-V are not symmetrical but are RECTILINEAR (in )

VELOCITY GRADIENT Empirical law by J. RAYROLE and G. MOLODIJ absorption coefficient (that enters the Unno-Rachkowsky solution):  modification of UNNOFIT to determine a 10 th parameter,  V  V (m/s) is the line continuum level minus line center level velocity difference

comparison UNNOFIT 9 parameters / UNNOFIT 10 parameters UNNOFIT 9 parameters (symmetrical profiles) UNNOFIT 10 parameters (including asymmetry)  V = 1.1 km/s

VELOCITY GRADIENT with this empirical law, UNNOFIT is enabled to treat asymmetric profiles the convergence is quicker tests: OK output vs input histogram output–input

VELOCITY GRADIENT 26 August 2006 UNNOFIT 9 parameters UNNOFIT 10 parameters field horizontality (angle between the vector and the horizontal plane) field strength (global)

VELOCITY GRADIENT 26 August 2006 map of the velocity gradient  V