Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.

Slides:



Advertisements
Similar presentations
1 Verification by Model Checking. 2 Part 1 : Motivation.
Advertisements

Model Checking Lecture 3. Specification Automata Syntax, given a set A of atomic observations: Sfinite set of states S 0 Sset of initial states S S transition.
Completeness and Expressiveness
Automatic Verification Book: Chapter 6. How can we check the model? The model is a graph. The specification should refer the the graph representation.
1 Verification of Parameterized Systems Reducing Model Checking of the Few to the One. E. Allen Emerson, Richard J. Trefler and Thomas Wahl Junaid Surve.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Metodi formali dello sviluppo software a.a.2013/2014 Prof.Anna Labella.
CS 267: Automated Verification Lecture 2: Linear vs. Branching time. Temporal Logics: CTL, CTL*. CTL model checking algorithm. Counter-example generation.
M ODEL CHECKING -Vasvi Kakkad University of Sydney.
Algorithmic Software Verification VII. Computation tree logic and bisimulations.
Automatic Verification Book: Chapter 6. What is verification? Traditionally, verification means proof of correctness automatic: model checking deductive:
An Introduction to the Model Verifier verds Wenhui Zhang September 15 th, 2010.
ECE Synthesis & Verification - L271 ECE 697B (667) Spring 2006 Synthesis and Verification of Digital Systems Model Checking basics.
Hybrid Systems Presented by: Arnab De Anand S. An Intuitive Introduction to Hybrid Systems Discrete program with an analog environment. What does it mean?
IT University of Copenhagen Lecture 7: BDD Construction and Manipulation 1. BDD construction 2. Boolean operations on BDDs 3. BDD-Based configuration.
Qualitätssicherung von Software (SWQS) Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FOKUS : Modellprüfung II - BDDs.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Review of topics Final exam : -May 2nd to May 7 th - Projects due on May 7th.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Information Security of Embedded Systems : Public Key Cryptosystems, Communication Prof. Dr. Holger Schlingloff Institut für Informatik und Fraunhofer.
Temporal Logic and Model Checking. Reactive Systems We often classify systems into two types: Transformational: functions from inputs available at the.
Review of the automata-theoretic approach to model-checking.
ESE601: Hybrid Systems Introduction to verification Spring 2006.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Model Checking Lecture 4 Tom Henzinger. Model-Checking Problem I |= S System modelSystem property.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Model Checking Lecture 3 Tom Henzinger. Model-Checking Problem I |= S System modelSystem property.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
CS 267: Automated Verification Lecture 6: Binary Decision Diagrams Instructor: Tevfik Bultan.
Algorithmic Software Verification V &VI. Binary decision diagrams.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
Four Lectures on Model Checking Tom Henzinger University of California, Berkeley.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Validation - Formal verification -
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Verification & Validation By: Amir Masoud Gharehbaghi
CIS 540 Principles of Embedded Computation Spring Instructor: Rajeev Alur
1 CSEP590 – Model Checking and Automated Verification Lecture outline for July 9, 2003.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Basic concepts of Model Checking
SS 2017 Software Verification Timed Automata
SS 2017 Software Verification Automated Verification
SS 2017 Software Verification Bounded Model Checking, Outlook
SS 2017 Software Verification SMT Solving, Partial Order Methods
SS 2017 Software Verification Probabilistic modelling – DTMC / MDP
Planning as model checking, (OBDDs)
Software Verification 2 Automated Verification
SS 2017 Software Verification LTL monitoring
Automatic Verification
SS 2018 Software Verification LTL Satisfiability applied
SS 2017 Software Verification CTL model checking, BDDs
SS 2017 Software Verification Tableaus, CTL model checking
Software Verification 2 Automated Verification
Software Verification 2 Automated Verification
Automatic Verification of Industrial Designs
Software Verification 2 Automated Verification
CSCI1600: Embedded and Real Time Software
Presentation transcript:

Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik

Slide 2 H. Schlingloff, SS2012: SWV 2 CTL model checking For each LTS/model there is exactly one computation tree CTL model checking works directly on the model (no need to extract computation sequences) For all subformulas of a formula and all states of a given model, mark whether the state satisfies the subformula iteration on formulas according to their inductive definition if p is an atomic proposition, then p M = I(p) M ={} (φ ψ) M = (M-φ M +ψ M ) (EXφ) M = {w | w (wRw w φ M )} (AXφ) M = {w | Aw (wRw w φ M )}

Slide 3 H. Schlingloff, SS2012: SWV 2 Symbolic Representation Modelchecking algorithm deals with sets of states and with relations (sets of pairs of states) Need an efficient representation BDD of the set {x | x >12 or even} x 1 &x 2 | !x

Slide 4 H. Schlingloff, SS2012: SWV 2 Calculation of BDDs

Slide 5 H. Schlingloff, SS2012: SWV 2 The Influence of Variable Ordering Heuristics: keep dependent variables close together!

Slide 6 H. Schlingloff, SS2012: SWV 2 Operations on BDDs Negation: easy (exchange T and F) Falsum: trivial and, or: Shannon expansion (φ OP ψ) = x (φ{x:=T} OP ψ{x:=T}) ¬ x (φ{x:= } OP ψ{x:= }) (φ ψ) = (x (φ{x:=T} ψ{x:=T})) (¬ x (φ{x:= } ψ{x:= })) BDD realization?

Slide 7 H. Schlingloff, SS2012: SWV 2 BDD-implies

Slide 8 H. Schlingloff, SS2012: SWV 2 Transitive Closure Each finite (transition) relation can be represented as a boolean formula / BDD The transitive closure of a relation R is defined recursively by Thus, transitive closure be calculated by an iteration on BDDs Logical operations (,, ) can be directly performed on BDDs

Slide 9 H. Schlingloff, SS2012: SWV 2 Reachability State s is reachable iff s 0 R*s, where s 0 S 0 is an initial state and R is the transition relation Reachability is one of the most important properties in verification most safety properties can be reduced to it in a search algorithm, is the goal reachable? Can be arbitrarily hard for infinite state systems undecidable Can be efficiently calculated with BDDs

Slide 10 H. Schlingloff, SS2012: SWV 2 Intuitively, xR*y iff there is a sequence w 0 w 1... w n of nodes connecting x with y In a finite model, this sequence must be smaller than the number of states. In practice, usually a few dozen steps are sufficient

Slide 11 H. Schlingloff, SS2012: SWV 2 Reflection What has been achieved Vorläufige Vorlesungsplanung - Einführung - Modellierung von Systemen - Temporale Logik - Modellprüfung - Symbolische Repräsentation - Abstraktion - Realzeit Where this is relevant HW design (IEEE 1850 PSL) Safety-critical SW design Embedded systems design

Slide 12 H. Schlingloff, SS2012: SWV 2 Feedback