Optimisation of Slow Extraction for SIS-18 and SIS-100

Slides:



Advertisements
Similar presentations
Heavy Ion Cancer Therapy
Advertisements

FAIR accelerator R&D Oliver Kester GSI Helmholtzzentrum für Schwerionenforschung Darmstadt and IAP Goethe-Universität Frankfurt.
Low Alpha & CSR in the MLS (PTB) G. Wüstefeld (BESSY) et al, ESLS XVI, Daresbury, Nov 28th Low Alpha Optics and Coherent Synchrotron Radiation.
IK Slide 0 First look at the WCM data from July 2012 September 6 th 2012 Ian Kirkman.
1 Coherent Synchro-Betatron Resonance in the FNAL Booster A. Burov, V. Lebedev HB 2008.
Machine Physics at ISIS Proton Meeting 24 th March 11 Dean Adams (On behalf of ISIS Accelerator Groups)
A 10 GeV, 4 MW, FFAG, Proton Driver at 50 Hz G H Rees, RAL.
Eric Prebys, FNAL. USPAS, Knoxville, TN, Jan , 2014 Lecture 13 - Synchrotron Radiation 2 For a relativistic particle, the total radiated power (S&E.
Eric Prebys, FNAL.  In our earlier lectures, we found the general equations of motion  We initially considered only the linear fields, but now we will.
Beam-based Measurements of HOMs in the HTC Adam Bartnik for ERL Team, Daniel Hall, John Dobbins, Mike Billing, Matthias Liepe, Ivan Bazarov.
Proton Beam Measurements in the Recycler Duncan Scott On Behalf of the Main Injector Group.
Resonance Crossing Experiment in PoP FFAG (preliminary report) M. Aiba (Tokyo Univ.) for KEK FFAG Group FFAG W.S. KEK.
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
Proton beams for the East Area The beams and their slow extraction By : Rende Steerenberg PS/OP.
S.J. Brooks RAL, Chilton, OX11 0QX, UK Options for a Multi-GeV Ring Ramping field synchrotron provides fixed tunes and small.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
P. Spiller, SIS18upgrade, Peter Spiller GSI, Darmstadt Kick off Meeting - EU Construction DIRAC Phase SIS18 upgrade.
Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators Silvia Zorzetti.
Study of Slow Extraction Relevant to the FAIR Project Markus Kirk Fair-Synchrotrons Group GSI mbH Blockseminar, Riezlern, 8 th March 2007.
Basic BPM Hardware Theory Jim Steimel. Wall Current Charge in a cylindrical perfectly conducting pipe produces an equal and opposite image charge at the.
6. betatron coupling sources: skew quadrupoles, solenoid fields concerns: reduction in dynamic (& effective physical) aperture; increase of intrinsic &
Details of space charge calculations for J-PARC rings.
Advanced Accelerator Design/Development Proton Accelerator Research and Development at RAL Shinji Machida ASTeC/STFC/RAL 24 March 2011.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
Beam loss and longitudinal emittance growth in SIS M. Kirk I. Hofmann, O. Boine-Frankenheim, P. Spiller, P. Hülsmann, G. Franchetti, H. Damerau, H. Günter.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
NUCLOTRON CONTROL SYSTEM (NCS) V.Andreev, E.Frolov, A.Kirichenko, A.Kovalenko, B.Vasilishin, V.Volkov Laboratory of High Energies, JINR, Dubna.
Part III Commissioning. Proof of Principle FFAG (POP) study The world first proton FFAG –Commissioned in March –From 50 keV to 500 keV in 1ms. –Proof.
Beam Loss Simulation in the Main Injector at Slip-Stacking Injection A.I. Drozhdin, B.C. Brown, D.E. Johnson, I. Kourbanis, K. Seiya June 30, 2006 A.Drozhdin.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Office of Science U.S. Department of Energy Containing a.
PHYSICAL PROJECT OF BOOSTER FOR NICA ACCELERATOR COMPLEX Alexey Tuzikov, Nikolay Agapov, Andrey Butenko, Alexey Eliseev, Viktor Karpinsky, Hamlet Khodzhibagiyan,
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
E Levichev -- Dynamic Aperture of the SRFF Storage Ring Frontiers of Short Bunches in Storage Rings INFN-LNF, Frascati, 7-8 Nov 2005 DYNAMIC APERTURE OF.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
Crossing transition at RHIC V.Ptitsyn, N.Abreu, M. Brennan, M.Blaskiewicz, W. Fischer, C. Montag, R. Lee, S.Tepikian.
February 5, 2005D. Rubin - Cornell1 CESR-c Status -Operations/Luminosity -Machine studies -Simulation and modeling -4.1GeV.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
FFAG’ J. Pasternak, IC London/RAL Proton acceleration using FFAGs J. Pasternak, Imperial College, London / RAL.
Beam loss and radiation in the SPS for higher intensities and injection energy G. Arduini 20 th November 2007 Acknowledgments: E. Shaposhnikova and all.
Pushing the space charge limit in the CERN LHC injectors H. Bartosik for the CERN space charge team with contributions from S. Gilardoni, A. Huschauer,
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
The nonlinear dynamics of SIS100 at injection G. Franchetti Beam dynamics meet Magnets II 18/4/2012G.Franchetti1 Magnet multipoles: Dipole: Akishin et.
Single particle dynamics in the ThomX ring Jianfeng zhang 12/02/2015 LAL.
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
Thomas Roser SPIN 2006 October 3, 2006 A Study of Polarized Proton Acceleration in J-PARC A.U.Luccio, M.Bai, T.Roser Brookhaven National Laboratory, Upton,
Beam Diagnostics Seminar, Nov.05, 2009 Das Tune-Meßverfahren für das neue POSI am SIS-18 U. Rauch GSI - Strahldiagnose.
1 Tracking study of muon acceleration with FFAGs S. Machida RAL/ASTeC 6 December, ffag/machida_ ppt.
Numerical Simulations for IOTA Dmitry Shatilov BINP & FNAL IOTA Meeting, FNAL, 23 February 2012.
R. Bartolini, John Adams Institute, 27 January 20161/23 HT Lecture on Nonlinear beam dynamics (I) Motivations: nonlinear magnetic multipoles Phenomenology.
Fix-lines and stability G. Franchetti and F. Schmidt GSI, CERN AOC-Workshop - CERN 6/2/2015 G. Franchetti and F. Schmidt1.
Dejan Trbojevic, September 21, 2009International Workshop on FFAG09 - Fermilab 1 Dejan Trbojevic Crossing Resonances In a Non-scaling FFAG.
C. Biscari, D. Alesini, A. Ghigo, F. Marcellini, LNF-INFN, Frascati, Italy B. Jeanneret, CERN, Geneva, Switzerland CLIC DRIVE BEAM FREQUENCY MULTIPLICATION.
Interpretation of beam signals for high intensities
Beam test of slow extraction from the ESR
The ISIS Dual Harmonic Upgrade
J-PARC main ring lattice An overview
A.Lachaize CNRS/IN2P3 IPN Orsay
Beam based measurements
Multi-Turn Extraction studies and PTC
SIS-18 RF KNOCK-OUT OPTIMISATION STUDIES
Elena Wildner CERN CA15139 Meeting, Sofia 15/
Planned measures for improving the SIS18 spill quality
Sabrina Appel, GSI, Beam physics Space charge workshop 2013, CERN
Multiturn extraction for PS2
Thursday Week 1 Lecture Jeff Eldred Nonlinear Sextupole Resonance 1 1
Multi-Turn Extraction for PS2 Preliminary considerations
Electron Rings Eduard Pozdeyev.
Negative Momentum Compaction lattice options for PS2
Negative Momentum Compaction lattice options for PS2
Presentation transcript:

Optimisation of Slow Extraction for SIS-18 and SIS-100 M. Kirk Synchrotrons Group, GSI Spill intensity 78Kr34+ 600 MeV/u 12C6+ 430 MeV/u Available at http://www-linux.gsi.de/~kirk

Overview Principles of resonant extraction Extraction schemes SIS-18 Spill-ripple feedback Spill intensity control Spill measurement and analysis Hardt condition SIS-100 “Not so Hardt” condition Power converter ripple (main quadrupoles) RF Knock-Out specification Conclusion & Outlook

Resonance Theory – Sextupole Perturbation B-field of a sextupole Equation of motion #  over circumference: „Tune“ Change variables …

Resonance Theory – Sextupole Perturbation …to normalized coordinates (u, p) as function of  s = point of interest Close to just one resonance (n)

Resonance Theory – Sextupole Perturbation Change variables (u,p)  (r,) to find unstable fixed points (A,B,C)  = Separatrix eventually obtaining at the unstable fixed points A,B,C Which yield the conditions on r and  …

Resonance Theory – Sextupole Perturbation … Area of separatrix „Third order/integer“ resonance Normalised sextupole strength Spiral step along the extraction arm > effective septum width!

Extraction Methods (M. Pullia) GSI GSI Move machine tune Dashed line GSI GSI (Q‘=0) Move machine tune towards resonance. RF acceleration, Longitudinal noise, Betatron core. Transverse RF excitation.

RF Knock-Out Extraction Transverse Schottky Spectrum PAM spectrum Power density Pick-Up BW (m=0, USB) KO Exc. … ~5 MHz ~300MHz Qf*f0 Qf*f0 (m+1/3)f0 Frequency mf0

RF Knock-Out Extraction BPSK (GSI) X X‘ Dual FM (HIMAC) Intensity Separate Function not shown.

Block Functions of the SIS-18 RF Knock-Out P. Moritz, GSI bel.gsi.de/mk/fg/ko_extr.pdf

Theory Time variation in tune of a bunched beam subject to ripple from the power supplies to the quadrupoles where, Therefore area of separatrix will also oscillate: Thus, to minimize sensitivity to ripple in the quadrupoles, extract with as high S as possible without distortion to the separatrix.

Effect of tune ripple on separatrix Beam before powering resonance (b) First Extraction Septum Edge Septum change due to tune ripple N Unstable resonant particle at Nth turn (b) (a) 1 4 7 10 …Spill intensity is modulated.

Ripple Injection Active ripple excitation (Moritz 2003) …spill ripple reduced. Analyzer + generator replaced with feedback amplifier… 300 Hz Traces offset. F/B on Extraction delay determined. Sets limit for spill intensity control. F/B off

Spill Analysis DAQ Systems at GSI ABLASS / ABLAX TRigger LOgic Pulse Counting NIM modules (discriminator: analogdigital pulse) 4 x 32-bit Multi-Scalers (time slice: bin size) Multi purpose VME module (event decoder) Particles counted: primary beam or secondaries Detectors: Numerous types Detectors at: SIS, HEBT, CAVES Spill intensity versus time Countrate histogram Pulse Counting Detector: Scintillator Pile-up 50-100 ns CFDFirmware (counting etc.) Particles counted: products Detectors at: LAND, FRS ~103..5 particles per Prim. (FRS) Time interval (pulse-pulse) hist. ABLASS/X Detectors Plastic Scintillator Pulse (ELR) ~20 ns Pulse Counting 1 Pulse per Prim. Mean  106 Prim./s Bin size min. 10 s Ionisation Chamber Pulse (Gas-ions) ~10 s Current-to-Frequency fmax=1 MHz Pulse per Prim. depend on beam Mean 104..9 Prim./s Bin size >10 s Secondary e- Monitor Pulse (sec. e-) < 10 ns Current-to-Frequency depend on beam Mean >108 Prim./s Bin size >> 10 s

Spill detection (P. Forck) http://www-bd.gsi.de/conf/juas/juas_script.pdf

SIS-100 Synchrotron Doublet lattice 6 super periods RF-KO

Hardt Condition 3 separatrices each with a different momentum (Á. Saá-Hernández) Dispersion zero for illustration. Hardt condition.

Several Sextupoles  Virtual Sextupole Driving term (Guignard 1978): Normalised strength: Betatron phase: 1st Extr. Sept. Virtual Sextupole

Chromaticity Correction in SIS-18: N = # 1C-Sextupoles = # 3C-Sextupoles Adjusted chromaticity (sextupoles on): Natural chromaticity (sextupoles off):

SIS-100 Extraction - Powering Scheme Lattice version: TDR, Dec 2008 ! RF-KO Exciter Chomaticities: -0.29 (h), -2.19 (v). Normalised to tune.

Momentum Sensitivity of Separatrix

Optimising the RF Knock-Out Bandwidth BW SIS-100: 238U28+ B=100Tm

SIS-18 Quadrupoles - Power Converters 12 pulse SCR power converter 0° (-15) 120° 240° R (magnets + cable) (50 Hz in) Active filter (50-70 kHz) L (magnets) 0° (+15) 120° 240°

SIS-18 Quadrupoles - Power Converters 12-pulse SCR supply. Grid 50 Hz, 3-phase. Main component 600 Hz. Smaller 300 Hz also present. -15 120° +15 30° 120° Active filter reduces U/U0 to <2%

SIS-18 Power Converter Ripple Measurements taken on the flattop of three machine cycles. Circuit Rigidity B [Tm] 6 10 18 In [A] Freq. [Hz] I [mA] S01QS1F 420 300 0.2 700 1270 600 0.7 0.5 S12QS1F 0.1 S01QS2D 400 0.3 665 1203 0.6 S12QS2D 0.4 1 0.8 S01QS3T 81 137 248 S11MU2 1092 2 1820 4 3340 1050 8 900 F-Quadrupoles 2 Series Circuits D-Quadrupoles 2 Series Circuits T-Quadrupoles 1 Series Circuit Dipoles (H. Welker, H. Ramakers, M. Kirk)

SIS-18 Power Converter Ripple Measurements taken at constant maximum current in the main quadrupoles. Circuit In [A] I at 300 Hz [mA] I at 600 Hz [mA] S01QS1F 1764 0.5 0.8 S12QS1F 1760 0.2 0.4 S01QS2D 1750 S12QS2D S01QS3T[1] S01QS3T[2] 807 820 0.3 [1] Measured in „computer“ mode. [2] Measured by „hand“. (H. Welker, H. Ramakers, M. Kirk)

SIS-100 Quadrupoles - Power Converter 600 Hz also in SIS-100 quadrupole power converters: 12 pulse line commutated converter (SCR.) Switching Mode (SM) structure: Hard switching. Supplies current to the main quadrupoles. All main quadrupoles but 2 are superconducting. Umax = 640 V at 100 Tm U/Umax = 1% Strongest ripple at f = 600 Hz L = 29 mH (series load) R from connecting cable only. Z  2fL I=U/Z = 59 mA Imax = 7.8 kA (100 Tm) I/I = 7.5x10-6 Closed-loop control has N=18-bit ADC for current measurement. 2N-1 levels from zero to Imax (Unipolar current, Bipolar voltage.) Therefore, minimum possible accuracy is 30 mA During flattop: Magnets are not ramped! 300 Hz component: U/Umax = 0.5% would yield same I

Main Quadrupoles – Power Converter Ripple SIS-100: 100Tm 238U28+ ions Spill Quality Factor (Imax/Imean) 0.26 (B=22-100 Tm)

Bunched Beam Extraction SIS-100: 238U28+ at 100 Tm F and D quadrupoles: I/I=±10-4

Spill Quality - Sensitivity to Momentum Spread SIS-100: U (A=238, q=28+) at 100Tm DC beam. Spill Quality Factor (Imax/Imean) RMS Extracted Emittance [mm.mrad]

SIS-100 RF Knock-Out System Specification P. Moritz, “Detailed Specification on the SIS100 RF KO”, EDMS, GSI-B-RF Systems, 31 Jan 2011

Beam Intensity Control Open-Loop control. SIS-100 238U28+ 100Tm: Spill Currents KO-Amplitude b>0 b=0 (a=0) t4 Heavyside

Beam Intensity Control - Spill Feedback Simulation Proportional plus Integral (PI) control: SIS-100: U28+ at 100Tm (VP = 0)

SIS-18 Synchrotron Doublet lattice Super periodicity 12 Sextupoles in odd periods ES SX1 = Res. + Hor. Chro. SX2 = Ver. Chro. FQ = Foc. Quad. DQ = Defoc. Quad. QT = Triplet Quad. ES = Electrostatic Extr. Sept. MS1 = First Extr. Mag. Sept. MS2 = Second Extr Mag. Sept. RF-K.O. = RF Knock-Out Exciter SX1,FQ,DQ,SX2,QT FQ,DQ,QT Injection MS1,MS2 RF-K.O. Reinjection

Beam Intensity Control – Feedforward Measurement Beam: 12C6+ Energy: ~300 MeV/u C. Bert, A. Constantinescu, D. Ondreka, M. Kirk et al.

SIS-18 RF Knock-Out Simulation - Hardt Condition 181Ta61+ at 300 MeV/u (B=7.97 Tm) DC beam: p/p () = 7.7x10-5 RF Knock-Out: Amplitude (peak) = 2 kV Bandwidth = 6.2 mQ (FW) MAX/AVG: ~14 RMS/AVG: ~230% ~1% of ions lost at extr. septum Bin size 10 s Tunes: 4.3296(h), 3.27(v) Resonance (1C) + Chromaticity Sextupoles (1C): Amplitude K2L=0.1 m-2 Phase = -161 Offset K2L = 0.211 m-2 Remaining Chrom (3C) Sextupoles: K2L = -0.381 m-2

SIS-18 RF Knock-Out Simulation - Hardt Condition Animation: Horizontal beam phase space with first extraction septum edge (left)

Conclusion No real success so far in uniting a good: Extraction efficiency, Beamsize, Transmission to target, AND microstructure! Macrostructure at least could be a success story, even for SIS-100.

Preliminary Outlook Acknowledgements Code benchmarking Other dynamical effects Other extraction techniques, e.g. stochastic extraction Acknowledgements P. Spiller, N. Pyka, P. Moritz, U. Scheeler, G. Franchetti, D. Ondreka, P. Forck, T. Hoffmann, H. Reeg, H. Klingbeil, S. Sorge, E. Feldmeier, A. Dolinskii, H. Eickhoff, T. Furukawa (NIRS), H. Ramakers, H. Welker, Á. Saá Hernández, S. Pietri (FRS), C. Bert, A. Constantinescu, HKR operations crew.