Manufacturing Process

Slides:



Advertisements
Similar presentations
Digital Integrated Circuits© Prentice Hall 1995 Design Rules Jan M. Rabaey Design Rules.
Advertisements

FABRICATION PROCESSES
CMOS Fabrication EMT 251.
Lecture 0: Introduction
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process July 30, 2002.
CMOS Process at a Glance
VLSI Design Lecture 2: Basic Fabrication Steps and Layout
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 CMOS Process Manufacturing Process.
EE141 F. Brewer, adapted from MOSIS Data, Digital Integrated Circuits 2nd Manufacturing 1 ECE 224a Process and Design Rules  Process Overview  Device.
Introduction to CMOS VLSI Design Lecture 0: Introduction
Prelab: MOS gates and layout
Design and Implementation of VLSI Systems (EN1600) lecture04 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Sedra/Prentice.
Elettronica D. AA Digital Integrated Circuits© Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
The Physical Structure (NMOS)
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Sedra/Prentice Hall, Saint/McGrawHill,
CSE477 L05 IC Manufacturing.1Irwin&Vijay, PSU, 2002 CSE477 VLSI Digital Circuits Fall 2002 Lecture 05: IC Manufacturing Mary Jane Irwin (
Device Fabrication Example
Introduction Integrated circuits: many transistors on one chip.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Manufacturing Process
ES 176/276 – Section # 2 – 09/19/2011 Brief Overview from Section #1 MEMS = MicroElectroMechanical Systems Micron-scale devices which transduce an environmental.
Z. Feng VLSI Design 1.1 VLSI Design MOSFET Zhuo Feng.
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #2. Chip Fabrication  Silicon Ingots  Wafers  Chip Fabrication Steps (FEOL, BEOL)  Processing Categories 
Lecture 0: Introduction. CMOS VLSI Design 4th Ed. 0: Introduction2 Introduction  Integrated circuits: many transistors on one chip.  Very Large Scale.
1. A clean single crystal silicon (Si) wafer which is doped n-type (ColumnV elements of the periodic table). MOS devices are typically fabricated on a,
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Chapter 2 Manufacturing Process March 7, 2003.
ECE484: Digital VLSI Design Fall 2010 Lecture: IC Manufacturing
SEMINAR PRESENTATION ON IC FABRICATION PROCESS
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Introduction to CMOS VLSI Design CMOS Fabrication and Layout Harris, 2004 Updated by Li Chen, 2010.
Lecture 24a, Slide 1EECS40, Fall 2004Prof. White Lecture #24a OUTLINE Device isolation methods Electrical contacts to Si Mask layout conventions Process.
Digital Integrated Circuit Design
Introduction EE1411 Design Rules. EE1412 3D Perspective Polysilicon Aluminum.
Norhayati Soin 05 KEEE 4425 WEEK 8 2/9/2005 LECTURE 10: KEEE 4425 WEEK 8 CMOS FABRICATION PROCESS.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
Introduction EE1411 Manufacturing Process. EE1412 What is a Semiconductor? Low resistivity => “conductor” High resistivity => “insulator” Intermediate.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process Jan M. Rabaey Anantha Chandrakasan.
IC Processing. Initial Steps: Forming an active region Si 3 N 4 is etched away using an F-plasma: Si3dN4 + 12F → 3SiF 4 + 2N 2 Or removed in hot.
CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL DEPARTMENT OF ELECTRONICS & COMMUNICATIONS NMOS FABRICATION PROCESS - PROF. RAKESH K. JHA.
Digital Integrated Circuits A Design Perspective
©2008 R. Gupta, UCSD COSMOS Summer 2008 Chips and Chip Making Rajesh K. Gupta Computer Science and Engineering University of California, San Diego.
Dynamic Behavior of MOS Transistor. The Gate Capacitance t ox n + n + Cross section L Gate oxide x d x d L d Polysilicon gate Top view Gate-bulk overlap.
CMOS VLSI Design Introduction
CMOS VLSI Fabrication.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process Jan M. Rabaey Anantha Chandrakasan.
CMOS FABRICATION.
EE141 Manufacturing 1 Chapter 2 Manufacturing Process and CMOS Circuit Layout 1 st rev. : March 7, nd rev. : April 10, 2003.
2007/11/20 Paul C.-P. Chao Optoelectronic System and Control Lab., EE, NCTU P1 Copyright 2015 by Paul Chao, NCTU VLSI Lecture 0: Introduction Paul C.–P.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Patterning - Photolithography
CMOS Fabrication EMT 251.
CSE477 L05 IC Manufacturing.1Irwin&Vijay, PSU, 2003 CSE477 VLSI Digital Circuits Fall 2003 Lecture 05: IC Manufacturing Mary Jane Irwin (
CMOS VLSI Design Lecture 2: Fabrication & Layout
Lecture 2 State-of-the art of CMOS Technology
1. Introduction. Diseño de Circuitos Digitales para Comunicaciones Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration.
IC Manufactured Done by: Engineer Ahmad Haitham.
CMOS Fabrication CMOS transistors are fabricated on silicon wafer
Manufacturing Process I
Chapter 1 & Chapter 3.
Design Rule EMT 251.
Design Rules.
VLSI System Design LEC3.1 CMOS FABRICATION REVIEW
Digital Integrated Circuits A Design Perspective
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Manufacturing Process I
Manufacturing Process I
CSE 87 Fall 2007 Chips and Chip Making
Presentation transcript:

Manufacturing Process

General info Date esami:  Giugno  Luglio Sito per le slide o il materiale delle esercitazioni: Tutor del corso: ing. Elisabetta Farella. Per contattare il tutor:

The MOS Transistor

Polysilicon Aluminum

Cross-Section of CMOS Technology

A Modern CMOS Process Dual-well approach

Circuit Under Design – Symbolic representation

Its Layout View

The Manufacturing Process

The Silicon Wafer Single-crystal ingot Sliced wafers Important metric: defect density of the base material cm diameters, 1mm thickness Doping: 2x10 21 impurities/m 3 Diamond saw Seed crystal Molten Silicon Bath and Czochralski method 2:00 – 4:15

Clean Rooms

Photolithography 1. Oxidation layering 2. Photoresist coating 3. Stepper exposure 4. Photoresist development and bake 5. Acid Etching 6. Spin, rinse, and dry 7. Various process steps 8. Photoresist removal (or ashing)

oxidation optical mask process step photoresist coatingphotoresist removal (ashing) spin, rinse, dry acid etch photoresist stepper exposure development Typical operations in a single photolithographic cycle (from [Fullman]). Photo-Lithographic Process

Example: Patterning of SiO2 Si-substrate (a) Silicon base material (b) After oxidation and deposition of negative photoresist (c) Stepper exposure Photoresist SiO 2 UV-light Patterned optical mask Exposed resist SiO 2 Si-substrate SiO 2 2 (d) After development and etching of resist, chemical or plasma etch of SiO 2 (e) After etching (f) Final result after removal of resist Hardened resist Chemical or plasma etch Scaling is getting mask-based steps more and more challenging Done in parallel on the entire wafer

Recurring processing step (1) DIFFUSION and ION IMPLANTATION Doping recurs many times. Two approaches:  DIFFUSION IMPLANTATION: wafers in quartz tube in a heated furnace ( °C); dopants in gas diffuse in the exposed surface vertically and horizontally.  more dopants on the surface than deeper in the material  ION IMPLANTATION (+ annealing): dopants introduced by directing a beam of purified ions over semiconductor surface. Ions accelerations  deepness of penetration; Beam current and exposure time  dosage.  lattice damage. Repair by ANNEALING step (heating based) A wafer handling tray in ion implantation The magnets used to control the ion beam Diffusion furnace

Recurring processing step (2) DEPOSITION Repetitively, material is deposited over the wafer (buffering, insulating, etc.). Different techniques depending on materials Chemical vapor deposition (CVD): gas-phase reaction with energy supplied by heat (850°C). Ex. Si 3 N 4 Chemical deposition: Silane gas over heated wafer coated with SiO 2 = Polysilicon non-crystalline amorphous material Sputtering for Alluminium interconnect layers. Alluminium evaporated in vacuum, heated by electron- beam or ion-beam bombarding. … etc.

Recurring processing step (3) ETCHING To selectively form patterns (wires, contact holes) Wet etching – use of acid or basic solutions Dry or plasma etching – well defined directionality (sharp vertical contours) PLANARIZATION To ensure a flat surface a chemical-mechanical planarization (CMP) step is included before deposition of extra-metal layer on top of insulating SiO2

CMOS Process at a Glance Define active areas Etch and fill trenches Implant well regions Deposit and pattern polysilicon layer Implant source and drain regions and substrate contacts Create contact and via windows Deposit and pattern metal layers

CMOS Process Walk-Through p + p-epi (a) Base material: p+ substrate with p-epi layer p+ (c) After plasma etch of insulating trenches using the inverse of the active area mask p + p-epi SiO 2 3 SiN 4 (b) After deposition of gate-oxide and sacrificial nitride (acts as a buffer layer)

CMOS Process Walk-Through SiO 2 (d) After trench filling, CMP planarization, and removal of sacrificial nitride (e) After n-well and V Tp adjust implants n (f) After p-well and V Tn adjust implants p

CMOS Process Walk-Through (g) After polysilicon deposition and etch poly(silicon)

CMOS Process Walk-Through

Advanced Metallization

Design Rules

3D Perspective Polysilicon Aluminum

Design Rules Interface between designer and process engineer Guidelines for constructing process masks Unit dimension: Minimum line width  scalable design rules: lambda parameter  absolute dimensions (micron rules)

CMOS Process Layers Layer Polysilicon Metal1 Metal2 Contact To Poly Contact To Diffusion Via Well (p,n) Active Area (n+,p+) ColorRepresentation Yellow Green Red Blue Magenta Black Select (p+,n+) Green

Layers in 0.25  m CMOS process

Intra-Layer Design Rules Metal2 4 3

Transistor Layout

Vias and Contacts

Select Layer

CMOS Inverter Layout

Layout Editor

Design Rule Checker poly_not_fet to all_diff minimum spacing = 0.14 um.

Sticks Diagram 1 3 In Out V DD GND Stick diagram of inverter Dimensionless layout entities Only topology is important Final layout generated by “compaction” program

Packaging

Packaging Requirements Electrical: Low parasitics Mechanical: Reliable and robust Thermal: Efficient heat removal Economical: Cheap Size: small

Bonding Techniques

Tape-Automated Bonding (TAB)

Flip-Chip Bonding

Package-to-Board Interconnect (SMD) (c) Ball Grid Array

Package Types

Package Parameters

Multi-Chip Modules