C ELLULAR B IOCHEMISTRY AND M ETABOLISM (CLS 333 ) Dr. Samah Kotb Nasr Eldeen.

Slides:



Advertisements
Similar presentations
Pentose Phosphate Pathway Generation of NADPH and Pentoses COURSE TITLE: BIOCHEMISTRY 2 COURSE CODE: BCHT 202 PLACEMENT/YEAR/LEVEL: 2nd Year/Level 4, 2nd.
Advertisements

Alternative ways of monosaccharides metabolism.. Glucose The fate of glucose molecule in the cell Glucose-6- phosphate Pyruvate Glycogen Ribose, NADPH.
CARBOHYDRATE METABOLISM Kadek Rachmawati, M.Kes.,Drh.
Overview of catabolic pathways
CHAPTER 14 Glucose Utilization and Biosynthesis –Harnessing energy from glucose via glycolysis –Fermentation under anaerobic conditions –Synthesis of glucose.
Metabolism of glycogen. Regulation of glycogen metabolism Regulating site for glycogen synthesis Glycogen synthase Regulating site for glycogen catabolism.
The Pentose Phosphate Shunt (AKA: Pentose Phosphate Pathway, PPP) Uses Glucose 6P to produce 3, 4, 5, 6 and 7 carbon sugars. In the process of doing this.
Bacterial Physiology (Micr430)
1 Biochemistry 3070 Hexose Monophosphate Shunt. 2 Biological systems utilize a variety of simple sugars which must be synthesized by the cell. These sugars.
Lecture # 7 Pentose Phosphate Pathway
Additional Pathways in Carbohydrate Metabolism
Glucose Metabolism: An Overview By Reem Sallam, M.D.; Ph.D. Assistant Prof. & Consultant, Medical Biochemistry Dept. College of Medicine, KSU.
Fig 10.5 Overview of catabolic pathways Prentice Hall c2002 Chapter 11.
Bioc 460 Spring Lecture 33 (Miesfeld)
Bioc 460 Spring Lecture 33 (Miesfeld)
PENTOSE PATHWAY & ANTIOXIDANTS BIOC DR. TISCHLER LECTURE 30.
Fructose Metabolism Fructose can enter glycolysis and gluconeogenesis. Glucose is a main metabolic fuel in most organisms. Other sugars convert to glycolytic.
DR. SAIDUNNISA, MD Professor of Biochemistry Hexose monophosphate shunt.
Cellular Biochemistry and Metabolism (CLS 331) Dr. Samah Kotb Nasr Eldeen.
Pentose Phosphate Pathway Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry II.
Dr. Saidunnisa, MD Professor of Biochemistry
Metabolism Basics Title - metabolism basics.
PENTOSE PATHWAY & ANTIOXIDANTS BIOC DR. TISCHLER LECTURE 26.
PENTOSE PHOSPHATE SHUNT or HEXOSE MONOPHOSPHATE PATHWAY This pathway consists of two parts: 1) Glucose-6-P undergoes two oxidations by NADP +, the second.
Regulation of glycolysis Flux through biochemical pathways depends on the activities of enzymes within the pathway For some steps, the reactions are at.
The Pentose Phosphate Pathway. Introduction the enzymes of the pentose phosphate pathway are present in cytosol. The sequence of reactions of the pathway.
CHAPTER 16 Glycolysis.
TCA & Pentose Phosphate Pathway 12/01/2009. Citrate Synthase.
Pentose phosphate pathway A.Functions 1. NADPH for reductive biosyntheses. 2. ribose-5-phosphate for nucleic acid biosynthesis. 3. a route for the conversion.
Pentose phosphate pathway Pentose phosphate pathway has two phases.
Pentose Phosphate Pathway Where the ribose comes from?
Pentose phosphate pathway (hexose monophosphate shunt) READING: Harpers Biochemistry Chapter 22 Lehninger Principles of Biochemistry 3rd Ed. pp
Pentose phosphate pathway
NS 315 Unit 4: Carbohydrate Metabolism Jeanette Andrade MS,RD,LDN,CDE Kaplan University.
Pentose phosphate pathway ط Two phases of the pathway : oxidative and interconversion phase ط Significance of PMP shunt in certain tissues ط Production.
THE PENTOSE PHOSPHATE PATHWAY Dr. Gamal Gabr, College of Pharmacy.
The preparatory phase yields 2 molecules of glyceraldehyde 3 phosphate
The Pentose Phosphate Pathway. Glucose The fate of glucose molecule in the cell Glucose-6- phosphate Pyruvate Glycogen Ribose, NADPH Pentose phosphate.
HMP pathway/Pentose phosphate pathway
Carbohydrate Metabolism
HEXOSE MONO PHOSPHATE SHUNT
GLYCOLYSIS AND ALTERNATIVES
Carbohydrate Metabolism. I. Introduction: A.More than 60% of our foods are carbohydrates. Starch, glycogen, sucrose, lactose and cellulose are the chief.
بسم الله الرحمن الرحيم.
NS 315 Unit 4: Carbohydrate Metabolism Jeanette Andrade MS,RD,LDN,CDE Kaplan University.
CHAPTER 26 The Pentose Phosphate Pathway. Pentose Phosphate pathway is active when there is excess glucose 6-phosphate.
Lecture 1 Session Three Carbohydrate Metabolism 2 Dr. Dbdulhussein algenabi.
Hexose Monophosphate Pathway
Pentose phosphate pathway Cells are provided with a constant supply of NADPH for biosynthesis by the pentose phosphate pathway Also called the hexose monophosphate.
Storage Mechanisms and Control in Carbohydrate Metabolism Apr. 7, 2016 CHEM 281.
Pentose Phosphate Pathway
NS 315 Unit 4: Carbohydrate Metabolism
Major Metabolic Pathways of Glucose and Glucose Transport
22.4 Glycolysis: Oxidation of Glucose
Major Metabolic Pathways of Glucose and Glucose Transport
CARBOHYDRATE METABOLISM
Major Metabolic Pathways of Glucose & Glucose Transport
Pentose phosphate path way & other pathways of hexose metabolism
Pentose Phosphate Pathway
One fate of G6P is the pentose pathway.
PENTOSE PHOSPHATE PATHWAY (Hexose monophosphate pathway)
1 GLUCOSE ↓ G-6-P 2 PYRUVATE  PPP TCA. 1 GLUCOSE ↓ G-6-P 2 PYRUVATE  PPP TCA.
Hexose Monophosphate Shunt (HMP Shunt)
OBJECTIVES To understand the function of the pentose phosphate pathway in production of NADPH and ribose precursors for nucleic acid synthesis. To examine.
Pentose Phosphate Pathway (aka Hexose monophosphate shunt)
بسم الله الرحمن الرحيم.
Pentose phosphate pathway
Other Pathways of Carbohydrate Metabolism
Pentose phosphate pathway (hexose monophosphate shunt)
Pentose Phosphate Pathway
Presentation transcript:

C ELLULAR B IOCHEMISTRY AND M ETABOLISM (CLS 333 ) Dr. Samah Kotb Nasr Eldeen

P ENTOSE PHOSPHATE PATHWAY C HAPTER 2

INTRODUCTION In most animal tissues, glucose is catabolized via the glycolytic pathway into two molecules of pyruvate.

Pyruvate is then oxidized via the citric acid cycle to generate ATP. There is another metabolic fate for glucose used to generate NADPH and specialized products needed by the cell. This pathway is called the pentose phosphate pathway. Some text books call it the hexose monophosphate shunt, still others call it the phosphogluconate pathway. We will call it in this class the pentose phosphate pathway.

The pentose phosphate pathway produces NADPH which is the universal reductant in anabolic pathways. In mammals the tissues requiring large amounts of NADPH produced by this pathway are the tissues that synthesize fatty acids and steroids such as the mammary glands, adipose tissue, adrenal cortex and the liver.

Tissues less active in fatty acid synthesis such as skeletal muscle are virtually lacking the pentose phosphate pathway. The second function of the pentose phosphate pathway is to generate pentoses, particularly ribose which is necessary for the synthesis of nucleic acids.

T HE PPP CAN BE DIVIDED INTO TWO PHASES The oxidative phase : Generates NADPH which is required for many biosynthetic pathways and for detoxification of reactive oxygen species. The non-oxidative phase : Interconverts C3, C4, C5, C6 and C7 monosaccharides to produce ribose-5-P for nucleotide synthesis, and also to regenerate glucose-6-P to maintain NADPH production by the oxidative phase.

In the first step glucose-6-phosphate is oxidized into ribulose-5-phosphate, CO2. During the oxidation of glucose- 6-phosphate NADP+ is reduced into NADPH. The second step of the pathway converts the ribulose 5- phosphate into other pentose-5-phosphates including ribose-5-phosphate used to synthesize nucleic acids.

The third step includes a series of reactions that convert three of the pentose-5-phosphates into two molecules of hexoses and one triose. In the fourth step, some of these sugars are converted into glucose-6-phosphate so the cycle can be be repeated. The direction of the pathway varies to meet different metabolic conditions.

T HE OXIDATIVE PHASE 1 Glucose-6-P is converted to ribulose-5-P with production of 2 molecules of NADPH and CO2 Three enzymatic reactions in the oxidative phase G6PD is the committed step in the Pentose Phosphate Pathway because 6-Phosphogluconolactone has no other metabolic fate except to be converted to 6-phosphogluconate.

Glucose-6-phosphate Dehydrogenase catalyzes oxidation of the aldehyde at C1 of glucose-6-phosphate, to a carboxylic acid. This enzyme requires Mg 2+ et NADP + (serves as electron acceptor) as coenzymes NADPH is a potent competitive inhibitor of this enzyme NADPH/NADP+ increase inhibits the reaction NADPH/NADP+ decrease stimulate the reaction

6-Phosphogluconolactonase catalyzes hydrolysis of 6- Phosphogluconolactone. The product is 6-phosphogluconate. It is irreversible but not rate-limiting.

Phosphogluconate Dehydrogenase catalyzes oxidative decarboxylation of 6-phosphogluconate, to yield the 5-C ketose ribulose-5-phosphate The OH at C3 (C2 of product) is oxidized to a ketone This promotes loss of the carboxyl at C1 as CO 2 NADP + serves as oxidant.

T HE NON - OXIDATIVE PHASE 2 Ribulose-5-phosphate by means of ribulose-5-p phos – epimerase is converted to xylulose-5-p while by R-5-P isomerase is converted to ribose-5-P.

Epimerase inter-converts stereoisomers ribulose-5-P and xylulose-5-P Isomerase converts the ketose ribulose-5-P to ribose-5-P which is used in nucleotide, nucleic acid biosynthesis Both reactions are reversible

Transketolase transfers a 2-C fragment containing ketone group from xylulose-5-P to ribose-5-P. Transketolase requires thiamine pyrophosphate (TPP), a derivative of vitamin B 1 as coenzyme and Mg 2+ as cofactor Transfer of the 2-C fragment to the 5-C ribose-5-P yields sedoheptulose- 7-P and glyceraldehyde-3-P.

Transaldolase catalyzes transfer of a 3-C from sedoheptulose-7- phosphate to glyceraldehyde-3- phosphate to form erythrose-4 P and fructose- 6-p.

Transketolase Transfer of the 2-C fragment ( containing ketone group) from xylulose-5-P to erythrose-4-Pto yields fructose-6-P and glyceraldehyde-3-P. Xylulose-5-P + erythrose-4-P fructose-6-P+ glyceraldehyde-3-P

SUMMARY: The balance sheet below summarizes flow of 15 C atoms through PPP reactions by which 5-C sugars are converted to 3-C and 6-C sugars.

I MPORTANCE OF P ENTOSE P HOSPHATE P ATHWAY

Ribulose-5-P may be converted to ribose-5-phosphate, a substrate for synthesis of nucleotides, nucleic acids and coenzymes The pathway also produces some NADPH NB: PPP is the only way of ribose-5-P production in our body due to absence of ribokinase enzyme

Glyceraldehyde-3-P and fructose-6-P may be converted to glucose-6-P, via enzymes of gluconeogenesis, for reentry to Pentose Phosphate Pathway, maximizing formation of NADPH, which is need for reductive biosynthesis.

3-C Glyceraldehyde-3-P and 6-C fructose-6-P, formed from 5-C sugar phosphates, may enter Glycolysis for ATP synthesis. 5-C Ribose-1-phosphate generated during catabolism of nucleosides also enters Glycolysis in this way, after first being converted to ribose-5-phosphate Thus the Pentose Phosphate Pathway serves as an entry into Glycolysis for both 5-carbon & 6-carbon sugars.

The major role PPP in RBCs is the production of NADPH which protect these cells from oxidative damage by providing GSH for removal of H2O2

Importance of PPP ( the main generator of NADPH): NADPH is needed for reductive biosynthesis: 1- Synthesis of fatty acids, cholesterol, steroid hormones& sphingosine. Thus it is active in lactating mammary gland, liver, gonads, adipose tissue & adrenal cortex. 2- Hydroxylation reactions in metabolism of phenylalanine and tryptophan.

3- synthesis of nitric oxide (NO): Arginine + O 2 + NADPH + H + NADP+ NO + citrulline NO is Laughing gas Used as anesthetic Causes relaxation of vascular smooth muscles. In macrophages, NO is effective against viral, fungal, Protozoan infections. Potent inhibitor of platelet aggregations. Neurotransmitter in brain.

4. It provides a way for oxidation of glucose by other than TCA cycle with no production of energy. 5. It provides the cell with ribose -5-P which is needed for nucleosides, nucleotides, nucleic acids & coenzymes biosynthesis.

Regulation of pentose phosphate pathway The entry of glucose 6-phosphate into the pentose phosphate pathway is controlled by the cellular concentration of NADPH. NADPH is a strong inhibitor of glucose 6-phosphate dehydrogenase (Rate Limiting Reaction). As NADPH is used in various pathways, inhibition is relieved, and the enzyme is accelerated to produce more NADPH.

Regulation of the G6PD activity controls flux through the glycolytic pathway and pentose phosphate pathways

Regulation of pentose phosphate pathway The synthesis of glucose 6-phosphate dehydrogenase is induced by the increased insulin/glucagon ratio after a high carbohydrate meal. Insulin, which secreted in response to hyperglycemia, induces the synthesis of G6P dehydrogenase and 6- phosphogluconate Dehydrogenase increasing the rate of glucose oxidation by PPP. The synthesis of glucose 6-phosphate dehydrogenase is repressed during fasting.

Glucose-6-phosphate dehydrogenase deficiency causes hemolytic anemia Mutations present in some populations causes a deficiency in glucose 6-phosphate dehydrogenase, with consequent impairment of NADPH production. Detoxification of H 2 O 2 is inhibited, and cellular damage results lipid peroxidation leads to erythrocyte membrane breakdown and hemolytic anemia. Most G6PD-deficient individuals are asymptomatic only in combination with certain environmental factors (sulfa antibiotics, herbicides, antimalarials, *divicine ) do clinical manifestations occur. *toxic ingredient of fava beans.