Methyl Torsional Levels in 9-Methylanthracene Masaaki Baba (Kyoto Univ. Japan) Yuki Noma (Kyoto Univ. Japan) Shunji Kasahara (Kobe Univ. Japan) Takaya Yamanaka (IMS, Japan) Jon T. Hougen (NIST, Gaithersburg)
Excited-state Dynamics dissociation ISC T1 fluo. S0 phos. IC S1 abs. IVR S2 Vibronic Coupling (NBO) Spin-orbit Coupling Coriolis Coupling Excited-state Dynamics
CH3 Internal Rotation (Torsion) How large is the barrier height V3 and V6 ? Enhancement of radiationless transitions. ¶ Density Increment of coupling levels ¶ Vibrational mixing including out-of-plane modes
CH3 Torsion of Toluene V3 = 0 V6(S0) = -4.874 cm-1 Staggered Eclipsed D. R. Borst and D. W. Pratt, J. Chem. Phys. 113, 3658 (2000)
Molecular Symmetry Group G12 (C3v×C2) z(b) x(c) μ y(a) G12 is isomorphic to the D3h group.
Energy Levels of CH3 Torsion of Toluene or 9MA
Fluorescence Excitation Spectra in Supersonic Jets 000 000 CH3 cm-1
Molecular Orbitals and S1 - S0 Transition CH3 ψ53 ψ49 ψ52 LUMO ψ48 LUMO ψ51 HOMO ψ47 HOMO ψ46 ψ50
Fluorescence Excitation Spectrum of 9MA J. A. Syage, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 82, 2896 (1985) F. Tanaka, S. Hirayama, and K. Shobatatake, Bull. Chem. Soc. Jpn. 59, 2011 (1986) Y. Stepanenko, A. L. Sobolewski, and A. Mordzinski, J. Mol.Spectrosc. 233, 15 (2005) M. Nakagaki, E. Nishi, K. Sakota, H. Nakano,and H. Sekiya, Chem. Phys. In press.
Rotational envelopes 0a1’→ 0a1’ 1e”→ 1e” 1e’→ 4e’ 0a1’→ 3a1”
Assignments can be confirmed by OODR.
Fluorescence Excitation Spectrum of 9MA in a Supersonic Jet
Energy Levels of CH3 Torsion of 9MA 100 200 300 400 V 6 (cm -1 ) Level Energy (cm 6a1’ 3a2” 3a1” 6a2’ 0a1’ 2e’ 1e” 4e’ 5e” 7e” 40 cm-1 S1 105 cm-1 S0
Energy Levels of CH3 Torsion of 9MA Calc. 4e' 3a1" 3a2" 2e' 1e" 0a1' 0 cm-1 5 20 57 23 72 S1 V6 = 40 cm-1 F = 5.2 cm-1 85 57 38 20 5.1 0 cm-1 0a1’→ 0a1’ 1e”→ 1e” ← 0.8 cm-1 → Calc. 4e' 0 cm-1 4 16 26 79 110 0 cm-1 4.3 16 25 79 100 S0 3a1" 3a2" F = 5.2 cm-1 2e' 1e" V6 = 105 cm-1 0a1'
Barrier Height to CH3 Rotation (cm-1) S0 -4.874 81 25 S1 -26.376 25 (V3) 10 (V6)
Barrier Height to CH3 Rotation (cm-1) S0 ~105 73 ~0 S1 ~40 292 ~0
Single Vibronic Level Dispersed Fluorescence Spectrum of 9MA in a Supersonic Jet IVR starts at 388 cm-1.
Enhancement of IVR by CH3 J. B. Hopkins, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 71, 3886 (1979)
IVR in Anthracene W. R. Lambert, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81, 2209 (1984)
Rotational Structure of Vibronic Bands of Toluene H. Ishikawa, Ph.D. Thesis, Kyoto Univ. 1993.
CH3 Torsion of Toluene D. R. Borst and D. W. Pratt, J. Chem. Phys. 113, 3658 (2000)
Collimated Molecular Beam and Single-mode Laser Ti:Sapphire Ring Laser CW YVO4 Laser Millenia X CR899-29 ΔE < 0.0001 cm-1 Wavetrain Magnet Computer Pulse nozzle Photon Counter UV PMT
Ultrahigh-Resolution Spectrum of 0-0 Band CH3 0a1’→ 0a1’ 1e’’→1e’’
Calculated Spectra of 9MA A-type B-type C-type cm-1
9MA calculation experiment cm-1
Rotation-torsion Hamiltonian
Ultrahigh-resolution Spectrum and Zeeman Effect
CH3 Levels of 9MA and the Excited-state Dynamics The potential barrier to rotation (V6) is estimated to be 110 (S0)and 40 (S1) cm-1, which is higher than that in toluene. The transition energy of 1e”→ 1e” is larger than 0a1’→ 0a1’ by 0.8 cm-1. IVR take places at the vibronic levels higher than 388 cm-1. The interaction with the triplet state is weak.