LOGO Course lecturer : Jasmin Šutković 4th March 2015 Chemistry - SPRING 2015 Lecture 1: Introduction to Chemistry.

Slides:



Advertisements
Similar presentations
Atoms, Elements & The Periodic Table
Advertisements

Chapter 4 Atomic Structure
CHAPTER 4 – ATOMIC STRUCTURE:
Chap 4 Bell -Ringers.
Atoms, Molecules & Ions AP Chemistry.
Chapter 21 Atoms and Elements Chapter 2. 2 Dalton’s Theory of Matter Dalton’s theory describes the basic unit of matter, the atom. The Atomic Theory of.
Atoms and Atomic Theory Chapter Early Chemical Discoveries and the Atomic Theory.
7th Grade Chemistry.
History of Atomic Theory
History of the Atom; Modern Atomic Theory, Subatomic Particles
Prentice Hall © 2003Chapter 1 Chapter 1 Introduction: Matter & Measurement CHEMISTRY The Central Science 9th Edition David P. White.
Chapter 2 Matter and Energy.
Chapter 3 Lesson Starter Young people should not smoke.
Kimia Anorganik I Atom dan Unsur Kun Sri Budiasih.
Basic Concepts of Chemistry Chapter Chemistry and Its Methods Scientific Method Hypotheses Laws Theories.
11 Atomic Theory. 2 A HISTORY OF THE STRUCTURE OF THE ATOM.
ATOMIC STRUCTURE & PERIODIC TABLE
Section 3.1 Properties of Matter
Chapter 4: Atomic Structure
Fundamental Chemical Laws
Chapter 1 Molecular Reasons. What Is Chemistry?  The science that deals with the materials of the universe and the changes these materials undergo. 
CHEMISTRY – CHAPTER 1 Matter & Energy.
Introduction to Chemistry
The History of the Atom…. went against, Aristotle, who believed that matter was composed of four qualities: earth, fire, air and water all matter is composed.
Chapter 16: The Properties of Atoms and the Periodic Table
Atomic Structure Chapter 5 The Atomists: The first atomic theory 460 BCE: Greek Democritus suggested that matter is “ composed of minute, invisible,
Courtesy: B.C. – Matter was composed of four fundamental substances: fire, earth, water, and air. Greeks considered whether matter.
Preview Lesson Starter Objectives Matter Basic Building Blocks of Matter Properties and Changes in Matter Properties of Matter Physical Properties and.
CHEMISTRY Matter and Change
Chapter 2 Atoms, Molecules and Ions The Early History of Chemistry Before 16 th Century Greeks were the first to attempt to explain why chemical changes.
Matter – Properties and Changes Chapter – Properties of Matter  Matter is anything that has mass and takes up space (mass is the amount of matter.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 1 Matter and Change Section 1 Chemistry.
Chemistry I Chapter 1. Lesson Starter How are the objects in this classroom related How are the objects in this classroom related to the study of chemistry?
Chapter 1: Chemistry is a Physical Science.  What is chemistry?
Matter and Properties Big idea: Atoms are building blocks of matter, all substances have specific properties, and matter can be a pure substance or a mixture.
Chap 1 Matter and Change Honors Chemistry. 1.0:Chemistry Chemistry – the study of the composition of substances and the changes they undergo Five major.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chemistry is the study of the composition, structure, and properties.
Unit 2 - Lecture 1: Structure of the Atom
Section 2.1 Atoms and Their Structures. Relate historical experiments to the development of the atom, Illustrate the modern model of an atom, Interpret.
Atomic Structure and the Periodic Table
Introduction to Chemistry. Chemistry The study of the composition, structure, and properties of matter, the processes that matter undergoes, and the energy.
Chapter 3 Matter & Its Properties. Volume and Mass  Volume: amount of 3-D space an object occupies; all matter has volume  Mass: measure of the amount.
Matter – Properties and Changes Chemistry – the study of matter and energy What is Matter?? What isn’t Matter??
Chemistry is a Physical Science Chapter 1, Sections 1 and 2.
With Dr. Wieser.  Chemistry can be defined as the study of matter.  Matter is anything that has mass and occupies space. So chemistry is the study of.
Chapter 1 Matter and Change. What is Chemistry?  Chemistry is the study of the composition, structure, and properties of matter, the processes that matter.
Eighth Grade Review Chemistry. Matter is anything that has mass and occupies space. All matter is made up of small particles called atoms.
The Study of Matter. What is chemistry? Chemistry: the study of matter and the transformation it undergoes Matter: anything that has mass and takes up.
LOGO Course lecturer : Jasmin Šutković 2th March 2016 Chemistry - SPRING 2016 Lecture 1: Introduction to Chemistry.
Chapter 1 Chemistry: The Science of Matter Fill in the blanks in your notes with the words bolded in orange.
LOGO Course lecturer : Jasmin Šutković 7th March 2016 Chemistry - SPRING 2016 Lecture 3: Matter and Energy.
1 UNIT 2 Atoms, Molecules, and Ions. 2 The Power of 10 nceopticsu/powersof10/
1.Pick up a copy of the powerpoint notes. 2. Place homework in black basket (Honors only). 3. Number 1-10 on a piece of paper.
Atomic Theory In 1808, the English Chemist John Dalton proposed the first theory of the nature of matter in stating that all matter was composed of atoms.
Branches of Chemistry BranchArea of Emphasis Examples Organic chemistry most carbon-containing chemicalspharmaceuticals, plastics Inorganic chemistry in.
Section 2 Matter and Its Properties
Lecture 2: Matter and Energy
Chapter 1 Modern Chemistry
Matter --- Properties and Changes
Matter and Change Chapter 1.
The Early History of Chemistry
Chapter 3: Matter-Properties and Changes
Chapter 3 Matter-Properties and Changes
Matter & Change – Chapter 1 Sections 1 & 2
Chapter 1: Matter and Change
Chapter 1 Table of Contents Section 1 Chemistry Is a Physical Science
Study of the composition of matter and the changes it undergoes.
Matter.
Presentation transcript:

LOGO Course lecturer : Jasmin Šutković 4th March 2015 Chemistry - SPRING 2015 Lecture 1: Introduction to Chemistry

Grading criteria Quizzes ( 2 x 10% )20% Midterm exam20% Tutorial / Homework assignments 10% Project10% AttendanceMore then 70%required Final exam40% Total100% Link for the book: EMiZm99OUFEeExHOERCLWs/edit EMiZm99OUFEeExHOERCLWs/edit

Contents International University of Sarajevo 1. Chemistry in modern world 1.1 Scientific method 2. What is MATTER? 3. Brief History of Chemistry 3.1 Atomic theory of matter 3.2 Law of multiple proportions 3.3 Avogadros Hypothesis 4. The ATOM 4.1 The electrons 4.2 Radioactivity 5. Periodic system of elements

1. Chemistry in the modern World  Chemistry is the study of properties of substances and how they react with one another.  It is an experimental science based of the scientific method!  Hunderds of materials that we use EVERY DAY, directly and indirectly, are the products of chemical reseacrh.  For example: Plastics, Computer Chips, paper, fuels, cement, ceramics, sollar cells, Cosmetics and so on  WE NEED CHEMISTRY TO UNDERSTAND OUR ENVIRONMENT!! International University of Sarajevo Why we study Chemistry ?:

Important chemistry processess in our life !  Digestion..  Cooking..  When you write with ink on paper..!  Steel is 94% iron and 6% carbon. The carbon forms complex bonds making steel so strong that you can bend an iron crowbar, but not a steel one.  ANYTHING that burns is undergoing a chemical reaction and almost always creates some form of carbon as waste.

Figure1. Chemistry in every day life

1.1 Scientific method  Scientists (Chemists) increase – expend their knowledge through the process of making observations, using SCIENTIFIC METHODS through laboratory experiments, to answer scientific questions.  We first define the GOAL (formulate the question we wish to answer).  After the goal we collect data about the problem. We use two types of data :  Qualitative data consists of descriptive observation  Quantitative data consists of numbers obtained from measurements.

Scientific method cont…  If we gather enough data about our subject we will be able to form a HYPOTHESIS.  Hypothesis is a proposed explanation for an observation, phenomenon, or scientific problem that can be tested by further investigation!  To test the hypothesis we perform EXPERIMENTS.If the experiments support the hypothesis we will perform another experiments(under various conditions) to verify our statement.  After many confirmed experiments( the results are reproducible) we can state a LAW or Scientific law.  A law simply says what happens but doesn't explain it (why this happens).

Scientific method cont….  Once a Law has been formulated, scientist try to develop a THEORY (unifying principle) that explains the law based on experimental methods( why nature behaved as it does ).  The theory can develop by time because new facts may arise. Figure 2.The scientific method

2. What is Matter ?  Matter is anything that occupies space and possesses MASS.  People, Gold, Smoke, Smog and so on…..  NOT MATTER : light and sound!  Many people mix-up MASS and Weight.  Object MASS is not its WEIGHT !!!  MASS is a measurement of the amount of matter something contains, while WEIGHT is the measurement of the pull of gravity on an object.  Matter does not depend on the location of an object but Weight does !!!  Example: On the Moon, your MASS will be the same, but your WEIGHT will be different since the Moon doesn't have the same gravity as the Earth.

States of Matter ?  Under normal conditions there are three distinct states of matter : 1.Solids – rigid and fixes shape 2.Liquids – fixed volumes and take the shape of their containers 3.Gases – have neither fixed shape nor fixed volume and fill their container completely Figure 3. Example of states of matter

Pure Substances and Mixtures  Pure Chemical Substance — any matter that has a fixed chemical composition and characteristic properties  Mixture — combinations of two or more pure substances in variable proportions in which the individual substances retain their identity 1. Homogeneous mixtures a. All portions of a material are in the same state, have no visible boundaries b. Also called SOLUTIONS 2. Heterogeneous mixtures a. Composition of a material is not completely uniform

The simplest substances are …  Most mixtures can be separated into pure substances - Elements or Compounds.  ELEMENTS is any substance that CANNOT be broken down into simpler substances.  Many definition of Elements exists but the modern one is : An element is a substance that consists only of atoms with the same nuclear charge.  99.99% of all substances are made of only 40 elements.  COUMPOUNDS are substances that can be broken into two or more elements.

Properties of Matter  Properties used to describe material substances can be classified as either physical or chemical.  Physical properties: Characteristics that scientists can measure without changing the composition of the sample under study (mass, color, volume, amount of space occupied by the sample).  Chemical properties: Describe the characteristic ability of a substance to react to form new substances (flammability and corrosion).

Properties of Matter cont…  Physical properties can be extensive or intensive 1. Extensive properties a. Vary with the amount of the substance, b. Include mass, weight, and volume. 2. Intensive properties a. Do not depend on the amount of the substance, b. Include color, melting and boiling point, electrical conductivity, and physical state at a given temperature, c. Determine a substance’s identity, d. Have an important intensive property called density (d), a ratio of two extensive properties, mass and volume density = mass / volume d = m/V (g/cm3)

3. Brief History of Chemistry  In fourth century B.C., ancient Greeks proposed that matter consisted of fundamental particles called ATOMS.  Over the next two millennia, major advances in chemistry were achieved by alchemists. Their major goal was to convert certain elements into others by a process called transmutation. MODERN CHEMISTRY  Beginnings in the sixteenth and seventeenth centuries, where great advances were made in metallurgy, the extraction of metals from ores.  In the seventeenth century, Boyle described the relationship between the pressure and volume of air and defined an element as a substance that cannot be broken down into two or more simpler substances by chemical means.

Modern Chemistry cont….  In the 18 th century Priestley discovered oxygen gas and the process of combustion  Father of modern chemistry -- Lavoisier discovered respiration and wrote the first modern chemistry text.  His famous law says that the mass is always conserved during the chemical reaction the mass of the products equals the mass of the reactants.

3.1 Atomic theory of matter  In 1803, Dalton proposed that elements consist of individual particles called atoms.  His atomic theory of matter contains four hypotheses: 1. All matter is composed of tiny particles called atoms. 2. All atoms of an element are identical in mass and fundamental chemical properties. 3. A chemical compound is a substance that always contains the same atoms in the same ratio. 4. In chemical reactions, atoms from one or more compounds or elements redistribute or rearrange in relation to other atoms to form one or more new compounds. Atoms themselves do not undergo a change of identity in chemical reactions.

Atomic theory of matter cont..  Dalton’s atomic theory is essentially correct, with four minor modifications: 1.Not all atoms of an element must have precisely the same mass 2.Atoms of one element can be transformed into another through nuclear reactions. 3.The composition of many solid compounds are somewhat variable 4.Under certain circumstances, some atoms can be divided (split into smaller particles ).

3.2 Law of multiple proportions  Dalton could not use his theory to determine the elemental compositions of chemical compounds because he had no reliable scale of atomic masses.  Dalton’s data led to a general statement known as the law of multiple proportions.  If two elements form more than one compound between them, then the ratios of the masses of the second element which combine with a fixed mass of the first element, will be ratios of small whole numbers!

3.3 Avogadro's hypothesis  Gay-Lussac attempted to establish the formulas of chemical compounds by measuring volumes of gases under constant temperature and pressure conditions, that react to make a chemical compound.  Exp: One volume of chlorine gas always reacted with 1 volume of hydrogen gas (HCl) or 1 volume of oxygen gas always reacted with two volume of hydrogen gas (H2O).  Gay-Lussac’s results were explained by Avogadro’s hypothesis, which proposed that equal volumes of different gases contain equal numbers of gas particles when measured at the same temperature and pressure.

Figure 4. Gay Lussacs eexperiments with chlorine gas and hydrogen

4. The ATOM  Each element is chemically unique. To understand why they are unique, you need to know the structure of the atom (the smallest particle of an element) and the characteristics of its components.  Atoms consist of electrons, protons, and neutrons. 1. Electrons and protons have electrical charges that are identical in magnitude but opposite in sign. Relative charges of  1 and +1 are assigned to the electron and proton, respectively. 2. Neutrons have approximately the same mass as protons but no charge—they are electrically neutral. 3. The mass of a proton or a neutron is about 1836 times greater than the mass of an electron. Protons and neutrons constitute the bulk of the mass of the atom.

4.1 Electrons  In 1897, Thomson demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that the cathode rays consisted of charged particles.  Measuring the extent of the deflection of the cathode rays, Thomson calculated the mass-to-charge ratio of the particles.  Since like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge. These particles are called electrons.

4.2 Radioactivity  In 1896, Hanry Becquerel discovered that certain minerals emitted a new form of energy.  Becquerel’s work was extended by Pierre and Marie Curie, who used the word radioactivity to describe the emission of energy rays by matter.  Ernest Rutherford, building on the Curies’ work, showed that compounds of elements emitted at least two distinct types of radiation. These particles were called α particles. Particles in the second type of radiation were called β particles and had the same charge and mass-to-charge ratio as electrons.  A third type of radiation, γ rays, was discovered later and found to be similar to a lower energy form of radiation called X -rays.

Radioactivity cont…  So we have four kinds of radiation : α particles, β particles and x and γ rays (gamma) Distinguished by the way they are deflected by an electric field and by the degree to which they penetrate matter ( ionizing radiation)  α particles and β particles are deflected in opposite directions.  Most α rays can not go through (penetrate) the human skin and they are ejected by He (Helium) nucleus.  β particles are actually ejected by electrons and if high radiation exist it may penetrate through the skin and damage it.  γ rays have no charge and are not deflected by electric or magnetic fields.  α particles have the lowest penetrating power, and γ rays are able to penetrate matter readily.  X rays are like gamma rays (Y rays). X rays and Y rays are very energetic and dangerous to humans.

The Atomic model  Rutherford’s results strongly suggested that both the mass and positive charge are concentrated in a tiny fraction of the volume of the atom, called the nucleus.  Rutherford established that the nucleus of the hydrogen atom was a positively charged particle, which he called a proton.  Also suggested that the nuclei of elements other than hydrogen must contain electrically neutral particles with the same mass as the proton.  The neutron was discovered in 1932 by Rutherford’s student Chadwick.  Because of Rutherford’s work, it became clear that an α particle contains two protons and neutrons—the

5. Periodic system of elements

Periodic system of elements cont..  The single most important learning aid in chemistry!!!  Summarizes huge amounts of information about the elements so that you can predict many of their properties and chemical reactions.  Elements are arranged in seven horizontal rows, in order of increasing atomic number from left to right and from top to bottom.  Rows are called periods and are numbered from 1 to 7.  Elements with similar chemical properties form vertical columns, called groups, which are numbered from 1 to 18.  Groups 1, 2, and 13 through 18 are the main group elements.  Groups 3 through 12 are in the middle of the periodic table and are the transition elements.  The two rows of 14 elements at the bottom of the periodic are the lanthanides and actinides.

Periodic system of elements…  Elements with similar chemical behavior are in the same group.  Elements of Group 1 are alkali metals.  Elements of Group 2 are the alkaline earths.  Elements of Group 17 are the halogens.  Elements of Group 18 are the noble gases.

Guidelines for reading …..  Book chapter 1 (page 1- 60)  Book - Electronic format : EMiZm99OUFEeExHOERCLWs/edit EMiZm99OUFEeExHOERCLWs/edit  Prepare yourself for tutorial (5 th Mar.2015) and revise UNITS OF MEASUREMENTS (starting page 55)..

LOGO Prepared by Jasmin Šutković