Deciphering the CIB Banyuls 08/10/2012 RESOLVING THE CIB: I) METHODS TO IDENTIFY THE SOURCES RESPONSIBLE FOR THE CIB Matthieu Béthermin CEA Saclay.

Slides:



Advertisements
Similar presentations
Herschel observations: contraints on dust attenuation and star formation histories at high redshift Véronique Buat Laboratoire dAstrophysique de Marseille.
Advertisements

Jeroen Stil Department of Physics & Astronomy University of Calgary Stacking of Radio Surveys.
Combined Energy Spectra of Flux and Anisotropy Identifying Anisotropic Source Populations of Gamma-rays or Neutrinos Sheldon Campbell The Ohio State University.
FastICA as a LOFAR-EoR Foreground Cleaning Technique Filipe Abdalla and Emma Woodfield University College London with Saleem Zaroubi, Vibor Jelic, Panos.
Wed. 17th Sept Hamburg LOFAR Workshop.  Extract a cosmological signal from a datacube, the three axes of which are x and y positions, and frequency.
Observations of the isotropic diffuse gamma-ray emission with the Fermi Large Area Telescope Markus Ackermann SLAC National Accelerator Laboratory on behalf.
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
GLAST Science Support CenterAugust 9, 2004 Likelihood Analysis of LAT Data James Chiang (GLAST SSC – SLAC)
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
A Bolometric Approach To Galaxy And AGN Evolution. L. L. Cowie Venice 2006 (primarily from Wang, Cowie and Barger 2006, Cowie and Barger 2006 and Wang.
Deriving and fitting LogN-LogS distributions Andreas Zezas Harvard-Smithsonian Center for Astrophysics.
The Near Infrared Background Excess and Star Formation in the HUDF Rodger Thompson Steward Observatory University of Arizona.
Source detection at Saclay Look for a fast method to find sources over the whole sky Provide list of positions, allowing to run maximum likelihood locally.
JuIn-2006Hervé Dole, IAS - Spitzer and the CIB1 Spitzer and the Cosmic Infrared Background Hervé Dole [w/ K. Caputi, G. Lagache, J-L. Puget et al.] Institut.
New Limits On The Density Of The Extragalactic Background Light From The Spectra Of All Known TeV Blazars Daniel Mazin Max-Planck-Institut für Physik,
EMerlin lenses and starbursts from the widest-area Herschel and SCUBA-2 surveys Stephen Serjeant, July 17th 2007.
Jarrett 2005 Extended Source Calibration T. Jarrett & M. Pahre (IPAC/SSC/CfA) IRAC GTO Workshop (CfA) Sep 29, 2005
UCL, Sept 16th 2008 Photometric redshifts in the SWIRE Survey - the need for infrared bands Michael Rowan-Robinson Imperial College London.
GLAST for Lunch 2004 Sept. 231 Fluctuation Analysis: Shadows of Invisible Sources What’s happening here?
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
Matched Filter Search for Ionized Bubbles in 21-cm Maps Kanan K. Datta Dept. of Astronomy Stockholm University Oskar Klein Centre.
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
FIRST LIGHT IN THE UNIVERSE Richard Ellis, Caltech 1.Role of Observations in Cosmology & Galaxy Formation 2.Galaxies & the Hubble Sequence 3.Cosmic Star.
PACS NHSC SPIRE Point Source Spectroscopy Webinar 21 March 2012 David Shupe, Bernhard Schulz, Kevin Xu on behalf of the SPIRE ICC Extracting Photometry.
PACS NHSC Data Processing Workshop – Pasadena 26 th - 30 th Aug 2013 Photometer Extended Source Photometry Bernhard Schulz NHSC/IPAC on behalf of the SPIRE.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
 Last Version: DR3.5  Released June 2012  Pipeline:  Optimised De- glitcher  BriGAdE  Allow Dark Pixel drift removal.
Galaxies and galaxy clusters at mm wavelengths: the view from the South Pole Telescope Gil Holder.
Deciphering the CIB 12 Oct 2012 Banyuls MODELING COUNTS AND CIBA WITH MAIN SEQUENCE AND STARBURST GALAXIES Matthieu Béthermin CEA Saclay In collaboration.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Aldo Dell'Oro INAF- Observatory of Turin Detailed analysis of the signal from asteroids by GAIA and their size estimation Besançon November 6-7, 2003.
Deciphering the CIB Banyuls 09/10/2012 RESOLVING THE CIB: II) STATISTICAL PROPERTIES OF SOURCES RESPONSIBLE FOR CIB FROM OBSERVATIONAL AND MODELING POINT.
Walid DRIDI, CEA/Saclay n_TOF Collaboration Meeting, Paris December 4-5, 2006 DAPNIA Neutron capture cross section of 234 U Walid DRIDI CEA/Saclay for.
PACS NHSC Data Processing Workshop – Pasadena 10 th - 14 th Sep 2012 Measuring Photometry from SPIRE Observations Presenter: David Shupe (NHSC/IPAC) on.
Counting individual galaxies from deep mid-IR Spitzer surveys Giulia Rodighiero University of Padova Carlo Lari IRA Bologna Francesca Pozzi University.
Understand Galaxy Evolution with IR Surveys: Comparison between ISOCAM 15-  m and Spitzer 24-  m Source Counts as a Tool Carlotta Gruppioni – INAF OAB.
SNAP Calibration Program Steps to Spectrophotometric Calibration The SNAP (Supernova / Acceleration Probe) mission’s primary science.
Array for Microwave Background Anisotropy AMiBA SZ Science AMiBA Team NTU Physics Figure 4. Simulated AMiBA deep surveys of a 1deg 2 field (no primary.
INFRARED-BRIGHT GALAXIES IN THE MILLENNIUM SIMULATION AND CMB CONTAMINATION DANIEL CHRIS OPOLOT DR. CATHERINE CRESS UWC.
Deep far-IR surveys and source counts G. Lagache Institut d’Astrophysique Spatiale.
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 SPIRE Broad-Band Photometry Extraction Bernhard Schulz (NHSC/IPAC)
Populations Studies in the Fermi Era D. Gasparrini on behalf of M. Ajello and Fermi Lat collaboration.
Age determination using AnalySED (multi- dimensional SED analysis) Method (data-analysis part) Zhaoyu Zuo
Andrii Elyiv and XMM-LSS collaboration The correlation function analysis of AGN in the XMM-LSS survey.
WFC3 EBL Collaborators: –Tim Dolch, Ranga-Ram Chary, Asantha Cooray, Anton Koekemoer, Swara Ravindranath Near-Infrared Extragalactic Background Fluctuations.
A Simple Analytic Treatment of the Intergalactic Absorption Effect in Blazar  -ray Spectra Introduction Stecker, Malkan, & Scully (2006) have made a detailed.
Source catalog generation for DC2 Aim (in order of priority): 1.Improve on source detection algorithm and error box. 2.Provide a list of source identifications.
Observations of Near Infrared Extragalactic Background (NIREBL) ISAS/JAXAT. Matsumoto Dec.2-5, 2003 Japan/Italy seminar at Niigata Univ.
The HerMES SPIRE Submillimeter Luminosity Function Mattia Vaccari & Lucia Marchetti & Alberto Franceschini (University of Padova) Isaac Roseboom (University.
Selection and Characterization of Interesting Grism Spectra Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
Digital Aperture Photometry ASTR 3010 Lecture 10 Textbook 9.5.
Radiation fields in the Milky Way and their role in High-Energy Astrophysics Richard Tuffs, Ruizhi Yang, & Felix Aharonian (MPI-Kernphysik Heidelberg)
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Population 3 and Cosmic Infrared Background A. Kashlinsky (GSFC) Direct CIB excess measurements CIB excess and Population 3 CIB excess and γ-ray absorption.
In conclusion the intensity level of the CCD is linear up to the saturation limit, but there is a spilling of charges well before the saturation if.
1 Lei Bai George Rieke Marcia Rieke Steward Observatory Infrared Luminosity Function of the Coma Cluster.
All-sky source search Aim: Look for a fast method to find sources over the whole sky Selection criteria Algorithms Iteration Simulations Energy information.
EoR power spectrum systematics
On behalf of the ARGO-YBJ collaboration
NICMOS Measurements of the Near Infrared Background
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
H.E.S.S. Blazar Observations:
Jean Ballet, CEA Saclay GSFC, 31 May 2006 All-sky source search
Fermi LAT Limits on High-Energy Gamma Lines from WIMP Annihilation
All-sky source search issues
On the source of the diffuse background light in HUDF
Basics of Photometry.
Wavelet method for source detection in GLAST photon-counting images
Presentation transcript:

Deciphering the CIB Banyuls 08/10/2012 RESOLVING THE CIB: I) METHODS TO IDENTIFY THE SOURCES RESPONSIBLE FOR THE CIB Matthieu Béthermin CEA Saclay

THE EXTRAGALACTIC BACKGROUND LIGHT (EBL) SED of the extragalactic background light (from Dole & Béthermin, in prep.)

MEASUREMENTS OF THE COSMIC INFRARED BACKGROUND (CIB) LEVEL Absolute measurements: need an absolute photometry and an accurate removing of the foregrounds. Upper limits: derived from the absorptions of TeV photons from the blazars by the COB/CIB. Lower limits: from the number counts and statistical analyses (stacking, P(D)). Measurements of the cosmic infrared background (from Béthermin+11, CRF proceeding) Direct countsStacking Total extrapolated contribution

SUMMARY ABSOLUTE MESUREMENTS OF THE CIB UPPER LIMITS FROM OPACITY OF THE UNIVERSE TO TEV PHOTONS LOWER LIMITS FROM DEEP SURVEY (AND SOME TECHNICAL STUFFS ABOUT SOURCE EXTRACTION AND COUNTS) MORE STRINGENT LOWER LIMITS BY STACKING ANALYSIS GO DEEPER WITH P(D) ANALYSIS

ABSOLUTE MEASUREMENTS

ABSOLUTE MEASUREMENTS OF THE CIB: THE CHALLENGE OF FOREGROUND SUBTRACTION

Spectral energy distribution of the background light (Matsuura+11).

MODELS OF ZODIACAL EMISSION Earth Model of zodiacal emission in the solar system (Kelsall+98)

MODELS OF ZODIACAL EMISSION Model of zodiacal emission in the solar system (Kelsall+98)

ABSOLUTE MEASUREMENTS OF THE CIB: THE CHALLENGE OF FOREGROUND SUBTRACTION

SUBTRACTION OF THE GALACTIC CIRRUS EMISSIONS Correlation between HI column density and intensity at 100 microns in IRAS data (Lagache+00)

SUBTRACTION OF THE GALACTIC CIRRUS EMISSIONS Decomposition of the HI emissivity into 3 components (Penin+12b, see also Miville-Deschênes+05)

SUBTRACTION OF THE GALACTIC CIRRUS EMISSIONS Local Intermediate velocity cloud High velocity cloud Spatial distribution of HI clouds in ELAIS-N1 field (Pénin+12) From Miville-Deschênes+05

SUBTRACTION OF THE GALACTIC CIRRUS EMISSIONS 100 microns IRAS map around ELAIS-N1: all component (left), model of cirrus (center), cirrus removed (right) (Pénin+12)

UPPER LIMITS FROM HIGH ENERGY PHOTONS

PHOTON-PHOTON SCATTERING TeV photon from blazar IR EBL photon e- e+ Cross section of the photon-photon interaction: Minimal energy of the IR photon for interaction: 2 (m e c 2 ) 2 /E Υ = 0.5 MeV 2 /E Υ or λ IR (microns) ≈ 0.6 E Υ (TeV) Details and references in e.g. Béthermin+11

ABSORPTION OF BLAZAR TEV PHOTONS BY THE EBL Spectral energy distribution of the extragalactic background light (Dole+06) 100 TeV 10 TeV 1 TeV 100 GeV

ABSORPTION OF TEV PHOTONS ALONG A LINE OF SIGHT From Hess collaboration

EFFECT ON BLAZAR SPECTRUMS Observed and intrinsic TeV spectrum of a distant blazar (Aharaonian+06) Intrinsic Observed Compilation of blazar spectra (Kneise&Dole 10)

UPPER LIMITS ON EBL SED From Meyer+12

LOWER LIMITS FROM DEEP SURVEYS

RESOLVING THE CIB Spitzer 24 microns

RESOLVING THE CIB Spitzer 24 microns Galaxy number counts at 24 microns (Béthermin+10a)

RESOLVING THE CIB Spitzer 24 microns Cumulative contribution of the IR galaxies to the CIB as a function of the flux cut (Béthermin+10a)

SOURCE EXTRACTION: IN A VERY SIMPLIFIED CASE Let’s discuss this (over-?)simplified case: The PSF is a Dirac (i.e. the flux of a source lies only in one pixel). The source density is small (i.e. less than one source per pixel). Constant Gaussian instrumental noise. The PDF of the signal (Smes) in pixel hosting a source with a flux Si is: The probability to detect a source for a threshold Sd is: The mean flux of the detected sources with an initial flux Si is:

SOURCE EXTRACTION IN A VERY SIMPLIFIED CASE Completeness for a 5sigma threshold Flux boosting (5 sigma threshold) The probability to detect a source for a threshold Sd is: The mean flux of the detected sources with an initial flux Si is: Smes ≈ Sd Smes ≈ Si

EMPIRICAL ESTIMATION OF COMPLETENESS AND FLUX BOOSTING IN A COMPLEXE CASE Principle of source injection (from Morgan Cousin) Step 1: inject few artificial sources in the real map Step 2: Rerun the extraction tool Step 3: compute the completeness from the fraction of recovered sources (and the flux boosting from their mean flux).

RESOLVING THE CIB: THE PROBLEM OF THE CONFUSION Spitzer 24 microns CIB 80% résolved (Béthermin+10a)

Spitzer 160 microns CIB 15% résolved (Béthermin+10a) RESOLVING THE CIB: THE PROBLEM OF THE CONFUSION

Herschel 160 microns CIB 70% résolved (Berta+10) RESOLVING THE CIB: THE PROBLEM OF THE CONFUSION

Herschel 500 microns CIB 6% résolved (Oliver+10) RESOLVING THE CIB: THE PROBLEM OF THE CONFUSION

CONFUSION LIMIT 2 regimes Source density limited Fluctuation limited In general, when source density reaches 20 beams/sources Fluctuation due to faint sources:

CONFUSION NOISE AND CONFUSION LIMIT 1-σ confusion noise (top) and confusion limit (bottom) as a function of wavelength for various diameters of telescopes (Béthermin+11)

USING THE 24 MICRON OBSERVATIONS AS A PRIOR 24 microns Spitzer250 microns Herschel

24 microns Spitzer250 microns Herschel USING THE 24 MICRON OBSERVATIONS AS A PRIOR

24 microns Spitzer250 microns Herschel USING THE 24 MICRON OBSERVATIONS AS A PRIOR

24 microns Spitzer250 microns Herschel Principle of the PSF-fitting photometry using a prior on positions. Model fitted to the data USING THE 24 MICRON OBSERVATIONS AS A PRIOR This task can be performed with several codes: DAOPHOT, Starfinder, GALFIT, FASTPHOT…

MORE STRINGENT LOWER LIMIT BY STACKING

24 microns Spitzer250 microns Herschel USING THE 24 MICRON OBSERVATIONS AS A PRIOR

24 microns Spitzer250 microns Herschel USING THE 24 MICRON OBSERVATIONS AS A PRIOR

24 microns Spitzer250 microns Herschel

STACKING: THE MOVIE Directed by Hervé Dole

LOWER LIMIT OF THE CIB BY STACKING Spectral energy distribution of the CIB (Dole+06)

LOWER LIMIT OF THE CIB BY STACKING Spectral energy distribution of the CIB (Dole+06)

Lower limits to the CIB in the sub-mm derived by stacking in the BLAST data (Marsden+09) LOWER LIMIT OF THE CIB BY STACKING

COUNTING THE FAINT INFRARED SOURCES BY STACKING Extragalactic number counts at 160 microns measured with Spitzer (Béthermin+10a) COUNTS AT 160 MICRONS

stacking Extragalactic number counts at 160 microns measured with Spitzer (Béthermin+10a) COUNTING THE FAINT INFRARED SOURCES BY STACKING

Cumulative contribution of the 160 microns sources to the CIB (Béthermin+10a) CONTRIBUTION OF THE UNRESOLVED SOURCES TO THE CIB

BIASES DUE TO THE CLUSTERING The clustering of the 24 microns sources biases the stacking results. This bias can be >20% with Spitzer at 160 microns and with BLAST Effect of the clustering on the stacking (from Bavouzet's thesis) Simulation including the Simulation with clustering

CORRELATION FUNCTION AND STACKING - Results of a stacking with IAS method (see Nicolas Bavouzet thesis or the annexe B of Béthermin et al. 2010b) Biases due to clustering Auto-correlation of the stacked population Cross-correlation with other populations Radial profile of the results of a SPIRE stacking (Béthermin+12b)

HOW THE CLUSTERING BIASES THE STACKING RESULTS? Estimated on the stacking measurements due to the clustering of the sources (from Bavouzet's thesis) Measured bias caused by clustering with SPIRE (Béthermin+12b)

ESTIMATION OF THE CLUSTERING BIAS Method 1: Convolve the 24microns map by the SPIRE beam. Stack the 24 microns catalog and compare with the flux of the individual sources (PROBLEM: do not take into account the dependence of the colors and the clustering with the redshift). Method 2: You make a first stacking to estimate the color (and scatter?) of you populations. You build a simulation using the position of the real sources and the color of them. You compare the input flux and output flux to estimate the bias (PROBLEM: do not take into account the contribution of the sources not seen at 24 microns)

ESTIMATION OF THE CLUSTERING BIASES Method 3: You build a simulation from models (PROBLEM: Can we realy trust the clustering in the models?) Method 4: fit directly a clustering and a source component on stacked images.

KURCZYNSKI & GAWIWER 2010 METHOD When you do PSF-fitting you fit this model to the map: This method allow to estimate the fluxes (Sk) of the sources. If you assume that the flux of all a population is the same, you can estimate the flux of this population correcting the contamination due to the geometry of the sources. It is the principle of KG method.

BIAS DUE TO THE INCOMPLETENESS OF THE INPUT CATALOG Stacking of 2uJy<S3.6<8uJy sources at 24 microns (Nicolas Bavouzet's thesis) Radial profile of the background for a stacking of an incomplete sample of UV sources (Heinis+12)

GO DEEPER WITH P(D) ANALYSIS

P(D) ANALYSIS Counts Histogram Ilustration of the link between the counts and the pixel histogram of a confusion limited infrared map. The histogram of a map containing only unclustered, point sources depends only on the counts and the instrumental effects (PSF, noise, filtering) Histogram

THE P(D) FORMALISM The pixel histogram can be analytically computed from the flux distribution of the sources. It supposes a Poissonian distribution of the sources. It supposes that all the sources are point-like.

PDF OF THE SIGNAL IN A PIXEL (SIMPLE CASE: PSF=DIRAC) The mean number of source in a pixel with a flux bin between S(k) and S(k+1) is given by: where dN/dS are the differential number counts, and ΔS = S(k+1) – S(k). The probability distribution of nk is a Poisson's law: The total signal D in a pixel is given by: and,

PDF OF THE SIGNAL IN A PIXEL (SIMPLE CASE: PSF = DIRAC) The PDF of the signal in a pixel is given by: It is easier in Fourier space: where: and then: You can pass to the continuous limit: ΔS

PDF OF THE SIGNAL IN A PIXEL (SIMPLE CASE: PSF = DIRAC) And finally:

TAKING INTO ACCOUNT THE PSF The flux F of a source seen in a given pixel by a sources of a flux S, at a distance θ from the pixel is: The distribution (n(F) = dN/dF) of the seen flux to a pixel is thus: dN/dS is the differential number counts. dN/dF is the distrubution of the seen flux (take into account ). They are linked by: Example of a gaussian PSF n(F) take into account the contribution of the source centered on the considered pixel, but also of ones centered on the other neighboring pixels. You have just to replace S by F, and dN/dS by n(F) into the P(D) formula.

ZERO VALUE AND NOISE For a relative photometer, the absolute zero is unknown and the map has a zero mean. In this case you have to shift your PDF. The PDF due to sources distribution must be convolved by the PDF of the instrumental noise.

DETERMINATION OF THE NUMBER COUNTS FROM A P(D) ANALYSIS We can fit the parameters of a model of counts comparing the PDF predicted by the counts model and the pixel histogram. The likelihood is thus: where pi is the PDF predicted by the P(D) and ni the pixel histogram. Model of counts dN/dS*S^2.5 S Histogram Number of pixels P(D) formula Predicted from the parameters Data

DETERMINATION OF THE NUMBER COUNTS USING A BROKEN POWER-LAW MODEL Patanchon et al. used a broken power-law model to fit the counts. The position in x of the knots is fixed. The position in y is fitted. Sub-mm number counts determined in BLAST data by Patanchon et al. (2009).

THE LIMIT DUE TO THE PARAMETRIZATION The broken power-law model do not reproduce exactly a smooth galaxy model. This effect can become larger than the statistical errors. Using a spline to link the knots reduces strongly (but not totally) this effect. Solide line: a galaxy model. Dashed line: the power model.

BEAM SMOOTHING If the instrumental noise and confusion noise are at comparable levels, convolving the map by the beam helps a lot. Simulation of a Herschel shallow field without (left) and with (right beam smoothing)

LIMITATION OF THE BEAM SMOOTHING But, beam smoothing spreads the PSF, and increase the problem of confusion. It should not be used for field when instrumental noise is negligible comparing to the confusion noise. Simulation of a Herschel deep field without (left) and with (right beam smoothing)

THE GALACTIC CIRRUS CONTAMINATION A cirrus in the FLS field at 250 micron. Histogram of 2 fields. Top: without filtering. Bottom: with a high pass filtering The galactic cirrus are contaminent for P(D) analysis. They can be removed with an high-pass filtering.

THE EFFECTS OF THE CLUSTERING The Poissonian behavior is dominant for scale smaller than 10 arcmin. For scale larger than 10 arcmin, we are dominated by cirrus and clustering. One solution: high-pass filtering. Power spectrum at 160 microns (Lagache+07).

P(D) FORMALISM AND LINEAR FILTERING The filtering is taken into account by the P(D) formalism if you use a filtered PSF. An high-pass filtering generate large and faint negative wings. Effect of a high-pass filtering on au gaussian PSF The center of the PSF is normalized at 1. 10'

The basic P(D) formula contain an hypothesis of positivity of the PSF. But, it is relatively easy to adapt it to negative case. We separate positive a and negative contribution: The final contribution is the convolution of the two distributions: We classicaly compute: And, finally: P(D) FORMULA FOR A PSF WITH NEGATIVE WINGS

P(D) ANALYSIS: HERMES RESULTS Number counts at 250, 350, and 500 microns measured by P(D) analysis (Glenn+10). P(D) HerMES (Conley's code) SPIRE HerMES resolved (Oliver et al. 2010) P(D) HerMES (Bethermin's code) SPIRE ATLAS resolved (Clements el al. 2010) Combining deep and wide fields, Glenn+10 managed to constrain the counts between 2 mJy and 1 Jy. This flux range is responsible of about 2/3 of the CIB.

CONCLUSION AND PERSPECTIVES Absolute measurements of the CIB are limited by the foreground subtraction. Future improvement will be due to a better characterization of these foregrounds (or missions outside the zodiacal could e.g. EXZIT). The upper limits from the absorption of TeV photons are more and more stringent, due to data accumulated by Fermi and HESS. The bulk of the CIB is resolved into individual sources below 160 microns, but due to confusion, it is not the case at longer wavelengths. It should be possible with SCUBA 2 at 450 microns and ALMA in the millimeter. The stacking and the P(D) analysis provide information about sources below the confusion limit. These statistical methods are affected by various bias, which have to be carefully corrected.