Implementation of adaptive control algorithm based on SPOC form

Slides:



Advertisements
Similar presentations
President UniversityErwin SitompulModern Control 7/1 Dr.-Ing. Erwin Sitompul President University Lecture 7 Modern Control
Advertisements

Lecture 20 Dimitar Stefanov. Microprocessor control of Powered Wheelchairs Flexible control; speed synchronization of both driving wheels, flexible control.
Root Locus Diagrams Professor Walter W. Olson
IEEE Region 6 Student Paper Contest, Anaheim CA, September 17 th 1998 Chen-I Lim Arizona State University
9.11. FLUX OBSERVERS FOR DIRECT VECTOR CONTROL WITH MOTION SENSORS
Properties of State Variables
Robot Localization Using Bayesian Methods
Robust and Efficient Control of an Induction Machine for an Electric Vehicle Arbin Ebrahim and Dr. Gregory Murphy University of Alabama.
Presenter: Yufan Liu November 17th,
Study of the periodic time-varying nonlinear iterative learning control ECE 6330: Nonlinear and Adaptive Control FISP Hyo-Sung Ahn Dept of Electrical and.
Lecture 11: Recursive Parameter Estimation
280 SYSTEM IDENTIFICATION The System Identification Problem is to estimate a model of a system based on input-output data. Basic Configuration continuous.
Top Level System Block Diagram BSS Block Diagram Abstract In today's expanding business environment, conference call technology has become an integral.
October 28, 2008Final Work Presentation1. October 28, 2008Final Work Presentation2.
Transient and steady state response (cont.)
Design Realization lecture 23
Design of a Control Workstation for Controller Algorithm Testing Aaron Mahaffey Dave Tastsides Dr. Dempsey.
SIMULINK Dr. Samir Al-Amer. SIMULINK SIMULINK is a power simulation program that comes with MATLAB Used to simulate wide range of dynamical systems To.
Kalman Filtering Jur van den Berg. Kalman Filtering (Optimal) estimation of the (hidden) state of a linear dynamic process of which we obtain noisy (partial)
11/05/2009NASA Grant URC NCC NNX08BA44A1 Control Team Faculty Advisors Dr. Helen Boussalis Dr. Charles Liu Student Assistants Jessica Alvarenga Danny Covarrubias.
Tracking a maneuvering object in a noisy environment using IMMPDAF By: Igor Tolchinsky Alexander Levin Supervisor: Daniel Sigalov Spring 2006.
I. Concepts and Tools Mathematics for Dynamic Systems Time Response
0 - 1 © 2007 Texas Instruments Inc, Content developed in partnership with Tel-Aviv University From MATLAB ® and Simulink ® to Real Time with TI DSPs Echo.
ECE Introduction to Control Systems -
Eurotev Feedback Loop for the mechanical Stabilisation Jacques Lottin* Laurent Brunetti*
Adaptive Signal Processing Class Project Adaptive Interacting Multiple Model Technique for Tracking Maneuvering Targets Viji Paul, Sahay Shishir Brijendra,
Combined State Feedback Controller and Observer
1 SOUTHERN TAIWAN UNIVERSITY ELECTRICAL ENGINEERING DEPARTMENT Gain Scheduler Middleware: A Methodology to Enable Existing Controllers for Networked Control.
MODEL REFERENCE ADAPTIVE CONTROL
Introduction to Adaptive Digital Filters Algorithms
Feedback Control of Flexible Robotic Arms Mohsin Waqar Intelligent Machine Dynamics Lab Georgia Institute of Technology January 26, 2007.
A Shaft Sensorless Control for PMSM Using Direct Neural Network Adaptive Observer Authors: Guo Qingding Luo Ruifu Wang Limei IEEE IECON 22 nd International.
Elad Hadar Omer Norkin Supervisor: Mike Sumszyk Winter 2010/11, Single semester project. Date:22/4/12 Technion – Israel Institute of Technology Faculty.
1 Chapter 8: Procedure of Time-Domain Harmonics Modeling and Simulation Contributors: C. J. Hatziadoniu, W. Xu, and G. W. Chang Organized by Task Force.
STUDY, MODEL & INTERFACE WITH MOTOR CORTEX Presented by - Waseem Khatri.
1 Final Conference, 19th – 23rd January 2015 Geneva, Switzerland RP 15 Force estimation based on proprioceptive sensors for teleoperation in radioactive.
Final year project Analysis and simulation of a converter fed dc motor drive by using MATLAB.
Sensorless Sliding-Mode Control of Induction Motors Using Operating Condition Dependent Models 教 授: 王明賢 學 生: 謝男暉 南台科大電機系.
RF Cavity Simulation for SPL Simulink Model for HP-SPL Extension to LINAC4 at CERN from RF Point of View Acknowledgement: CEA team, in particular O. Piquet.
LLRF Cavity Simulation for SPL
Progress in identification of damping: Energy-based method with incomplete and noisy data Marco Prandina University of Liverpool.
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Learning Theory Reza Shadmehr Optimal feedback control stochastic feedback control with and without additive noise.
Feedback Control System
0 - 1 © 2007 Texas Instruments Inc, Content developed in partnership with Tel-Aviv University From MATLAB ® and Simulink ® to Real Time with TI DSPs Spectrum.
State Space Control of a Magnetic Suspension System Margaret Glavin Supervisor: Prof. Gerard Hurley.
NCAF Manchester July 2000 Graham Hesketh Information Engineering Group Rolls-Royce Strategic Research Centre.
Control systems KON-C2004 Mechatronics Basics Tapio Lantela, Nov 5th, 2015.
SIMULINK-Tutorial 1 Class ECES-304 Presented by : Shubham Bhat.
Chapter 6: Frequency Domain Anaysis
MODELING THE CALIBRATED RESPONSE OF THE ADVANCED LIGO DETECTORS Luke Burks 2013 LIGO Caltech SURF Mentors: Alan Weinstein, Jameson Rollins Final Presentation.
Adaptive Control Loops for Advanced LIGO
University of Baghdad College of engineering Ele. & Com. Dept. 3 rd Year Matlab Report of By Ahmed Alaa Part I Part II.
Janne Salomäki and Jorma Luomi
Learning from the Past, Looking to the Future James R. (Jim) Beaty, PhD - NASA Langley Research Center Vehicle Analysis Branch, Systems Analysis & Concepts.
EEN-E1040 Measurement and Control of Energy Systems Control I: Control, processes, PID controllers and PID tuning Nov 3rd 2016 If not marked otherwise,
Digital Control CSE 421.
Chapter 8 State Feedback and State Estimators State Estimator In previous section, we have discussed the state feedback, based on the assumption that all.
Echo and Reverberation
Unscented Kalman Filter for a coal run-of-mine bin
SOUTHERN TAIWAN UNIVERSITY ELECTRICAL ENGINEERING DEPARTMENT
Arbin Ebrahim and Dr. Gregory Murphy University of Alabama
Queue Dynamics with Window Flow Control
Seismic Developments at LASTI LIGO-G Z
Digital Control Systems Waseem Gulsher
Chapter 6 Discrete-Time System
Digital and Non-Linear Control
Chapter 8 State Feedback and State Estimators State Estimator In previous section, we have discussed the state feedback, based on the assumption that all.
CONTROL SYSTEM AN INTRODUCTION.
Fixed-point Analysis of Digital Filters
Presentation transcript:

Implementation of adaptive control algorithm based on SPOC form Winter 2011 Supervisor: Dr. Ilan Rusnak Submitted by: Ofer Rosenberg Roy Mainer

Project Background Why do we need adaptive control? What is an SPOC form? What was accomplished in previous projects? Implementations of linear systems identification algorithms – in simulations and based on recorded data – not real time Different algorithms returned different results when applied on the same system. Which is correct? 2) רקע: פרויקט המשך לגיל קנאשטי שבנה המערכת ומימש אלגוריתמי זיהוי אשר אחד מהם היה spoc (במטלב ולא בזמן אמת) מהי בקרה אדפטיבית? מהו Spoc?

Project Goals Implementation of SPOC form adaptive control algorithm – in REAL TIME Observation and measurement Conclusions 3) מטרתנו לבצע שיערוך בזמן אמת ולהעריך את יכולת הזיהוי ואיכותו.

System Hierarchy Matlab + Simulink Dspace interface Linear motion system 4) כאן ניתן לראות את המערכת אשר חילקנו למערכת ההינע הלינארית, ממשק ה Dspace אשר מורכב מפאנל וכרטיס במחשב וכן תוכנת cintrol desk ששימשה אותנו להקלטת המשוב ומשתני המצב וכלי הסימיולינק בו מימשונו את ה SPOC והמטלב בו נעזרנו להקלטות.

Project Development Steps: Introduction to the linear motion system and the Dspace interface. Understanding and repeating the results of previous related projects. Implementation of the SPOC algorithm in Simulink. Test the algorithm on both simulation and real time. Gathering results and conclusions. 5) כאן ניתן לראות את שלבי הפרויקט: הבנה של המערכת שיש לנו ביד מגיל (הנע לינארי) ופונקציית תמסורת של מנוע זרם ישר. שחזור והבנה של תוצאות קודמות. מימוש SPOC בסימיולינק בדיקת האלגוריתם בסימולציה ואח"כ בזמן אמת איסוף תוצאות והסקת מסקנות

The SPOC Simulink blocks implementation ואת שלושת מקדמי המונה ושלושת מקדמי המכנה סה"כ וקטור באורך 9 כיוון שהמערכת מסדר 3 כפי ששערנו מה שהסתבר כטעות.

The SPOC Simulink blocks implementation - continued Using matrix building blocks and algebra we implement the SPOC algorithm. Process noise estimation vector (Qe block) is constant. 7) רעש התהליך Qe ורעש המדידה Re הם פרמטרים אשר אנו פותרים באמצעותם את אי הודאות באמצעות מסנן קלמן. כאן Qe קבוע בעתיד אנו משנים אותו למשתנה וממותג בפעולה בRT .

Simulation and Real Time Once the SPOC block was complete, our work was divided to two parts – simulation and real time. Simulation: Mainly based on simulated inputs and transfer functions. Real Time: Linear systems transfer function estimated in real time and recorded. Both methods estimate the transfer function during run time! 8) לאחר שמומש הבלוק של SPOC חולקה העבודה לסימולציה וזמן אמת: בסימולציה יצרנו plant במרחב המצב מסדר 3 מהסיבות שהסברנו קודם וחיברנו את בלוק ה SPOC כך שישערך (יזהה)את פ' התמסורת אותה יצרנו. בזמן אמת יצרנו לראשונה זיהוי של האלג' את פ' התמסורת של המערכת בזמן אמת ללא הקלטה של האות (וקטור משתני המצב).

Main System Simulink Diagram (simulation)

Main System Simulink Diagram (simulation) - continued A 3rd order linear system requires an input comprised of at least 3 non dependent signals. Input is fed to both the transfer function (also 3rd order) and the SPOC block. Transfer function output is recorded and fed to the SPOC block. The SPOC block outputs are the state space vector, the numerators and denominators vectors. Other blocks: Acker and KDC are used to gain stability by moving the poles to pre determined locations and normalizing the system’s gain respectively.

Simulation Results Numerator Coefficients Denominator Coefficient

Simulation Results – continued Simulated transfer function: Estimated transfer function: Success!

Main System Simulink Diagram (real time)

Main System Simulink Diagram (real time) - continued Based on the simulation schematic. Input switching to allow multiple choices and stop the motor from reaching the rail end. Gain blocks based on previous empiric results. Dspace designated blocks: Inputs are fed to motor through Dspace D/A. Outputs (motor position on rail) is fed through position feedback.

Process noise estimation vector The ratio Qe/Re affects the estimated coefficients convergence speed. Re – Measurement noise Qe – Process noise Results show that high ratio improves estimation speed while low ratio reduces noise. In simulation we have no measurement noise so no need to switch. Convergence time is approximately 20 [sec] in real time. After 20 [sec] the Qe vector is switched to lower the ratio and reduce the noise.

Real Time Results Numerator Coefficients Denominator Coefficient

Numerator Coefficients convergence – zoomed

Real Time Results – continued Estimated transfer function: Success? We have no reference to compare with…

Conclusions Results table Conclusions summary Comparison Parameter Simulation Real Time Accuracy Perfect Transfer function converged successfully. system might be of higher order. Convergence time Very fast, 23 [sec] without Qe switching. Also fast, 30 [sec] with proper Qe. Noise Noiseless Dramatic decrease in noise after Qe switching. Influence of closed loop None Influences the estimation result Linear system was expected to be of 3rd order. Results show it is probably of higher order. High ratio of Qe/Re improves convergence speed, while lower ratio reduces noise.

Articles Links The links will be opened from technion computers or any computer who is registered to IEEE Xplore Digital Library. Real-Time Simultaneous State Estimation and Parameters Identification of Linear Drive System with the SPOC based Algorithm http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00532255 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=721052 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4793065

Tubes http://www.youtube.com/watch?v=aFKcutmu7Jg&featu re=g-upl SPOC OPEN ZOOM http://www.youtube.com/watch?v=aFKcutmu7Jg&featu re=g-upl SPOC OPEN LOOP http://www.youtube.com/watch?v=KeURm9FxpgA&fea ture=g-upl SPOC ACKER GAIN 0.5 ZOOM http://www.youtube.com/watch?v=nv7UwoHDDZI&fea ture=g-upl SPOC ACKER GAIN 0.5 http://www.youtube.com/watch?v=He0nM6c7g14&feat ure=g-upl

Bibliography “Real-Time Simultaneous State Estimation and Parameters Identification of Linear Drive System with the SPOC based Algorithm” \ Dr. Ilan Rusnak (article) "Feedback Control of Dynamic Systems 6th Ed." \ Gene F. Franklin, J David Powell, Abbas Emami-Naeini (681.516) "Linear Control System Analysis and Design with Matlab 5th. Ed" \ John j. D'azzo, Stuart N. Sheldon (681.511) “Control for Unstable Nonminimum Phase Uncertain Dynamic Vehicle” \ Dr. Ilan Rusnak (article) “State Observability and Parameters Identifiability of Stochastic Linear Systems” \ Dr. Ilan Rusnak (article) “Simultaneous State Observability and Parameters Identifiability of Discrete Stochastic Linear Systems” \ Dr. Ilan Rusnak Internet and especially Wikipedia Project book by Gil Kanashty: "יישום אלגוריתמי זיהוי של מערכות ליניאריות על מערכת מעבדתית".

Dr. Ilan Rusnak Koby Kochai Orly Vigderzon Gil Kanashty Special thanks Dr. Ilan Rusnak Koby Kochai Orly Vigderzon Gil Kanashty

Ofer Rosneberg Roy Mainer Thanks for watching Ofer Rosneberg Roy Mainer

Adaptive Control (Wikipedia) “Adaptive Control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain”. For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is needed that adapts itself to such changing conditions.

SPOC Algorithm SPOC – States and Parameters Observability Canonical Form. SPOC algorithm is another method of estimating the transfer function of a system. By representing the observer canonical form of a 3rd order linear system, we can isolate the condition for stability. That condition can be solved using Kalman filter.

Linear Motion System Our linear motion system is based on a DC motor, traveling back and forth across the rail. The DC system has speed and even acceleration feedback. The motor is controlled by the computer via the Simulink implemented controller. This system was believed to be of 3rd order. המערכת מורכבת ממנוע DC מסילה ומשוב (מיקום) באמצעות אינקודר. המנוע מקבל אות מהמחשב דרך יחידת הדיספייס (המרת D/A) ומגבר ההספק המנוע מבוקר ע"י בקר הממוש בסימיוליק ומבוסס על פרויקט קודם כתוצאה מלימוד שעשינו על מנוע זרם ישר אנו מניחים בפרויקט כי המערכת היא מסדר שלישי

Acker Block

Real-Time Simultaneous State Estimation and Parameters Identification of Linear Drive System with the SPOC based Algorithm

Real-Time Simultaneous State Estimation and Parameters Identification of Linear Drive System with the SPOC based Algorithm - continued

Real-Time Simultaneous State Estimation and Parameters Identification of Linear Drive System with the SPOC based Algorithm - continued