Computational Approaches Computational Approaches

Slides:



Advertisements
Similar presentations
Fig_18_04 fig_18_04.
Advertisements

Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
Semiconductors Physics 355 computers  air bags  Palm pilots  cell phones  pagers  DVD players  TV remotes  satellites  fiber networks  switches.
Chapter 2 Basic Electricity. Objectives Upon completion of this course, you will be able to: –Briefly explain the atomic theory and is relationship to.
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
2014/7/2 Yoshida lab Shun Miyaue
Understanding the Giant Seebeck Coefficient of MnO 2 Nanoparticles Costel Constantin James Madison University James Madison University, October 2012.
Scientists do stupid looking things sometimes (though not too unsafe if they made the material carefully enough)
Zintl-Based Materials For Thermoelectrics 286G Final Presentation, Brett Compton 1 Ca 11 GaSb 9.
PH0101 UNIT-5 LECTURE 3 Introduction
What do you think is Liang doing?. Nano-Energy Laboratory  Principal Investigator: Dr. Choongho Yu  Graduate Assistants: Liang Yin, Yeontack Ryu,
Lecture #3 OUTLINE Band gap energy Density of states Doping Read: Chapter 2 (Section 2.3)
Motivati on. Energy and Nanotechnology Gang Chen Rohsenow Heat and Mass Transfer Laboratory Mechanical Engineering Department Massachusetts Institute.
Sinai University Faculty of Engineering Science Department of Basic science 7/14/ W6.
II–4 Microscopic View of Electric Currents.
Lecture 2 OUTLINE Important quantities Semiconductor Fundamentals (cont’d) – Energy band model – Band gap energy – Density of states – Doping Reading:
WEEK ONE TOPIC: ELECTRONICS SOLID STATE MATERIALS  CONDUCTORS  INSULATORS  SEMICONDUCTORS.
SEMICONDUCTORS Semiconductors Semiconductor devices
Jacob McKenzie, Ty Nowotny, Colin Neunuebel
MIPD Small-scale energy harvesting device LIUJIN.
Theoretical Study of Chalcopyrite CuInTe 2 as Thermoelectric(TE) materials 2014/12/3 Yoshida lab Shun Miyaue thermoelectric (TE) : 熱電 /12/0 3.
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Thermoelectric energy
Thermoelectricity of Semiconductors
Journal Club 13 July 2011 Tuğrul Çağrı CİNKARA. MIT, mechanical engineering.
1 ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 15: Introduction to Thermoelectric Energy Conversion (Reading: Handout)
1 ME 381R Lecture 17: Introduction to Thermoelectric Energy Conversion (Reading: Handout) Dr. Uttam Ghoshal NanoCoolers, Inc. Austin, TX 78735
Specific Heat of Solids Quantum Size Effect on the Specific Heat Electrical and Thermal Conductivities of Solids Thermoelectricity Classical Size Effect.
How many types of crystal structures exist?
Basic Physics of Semiconductors (1)
Numericals on semiconductors
8. Semiconductor Crystals Band Gap Equations of Motion Intrinsic Carrier Concentration Impurity Conductivity Thermoelectric Effects Semimetals Superlattices.
EEE 3394 Electronic Materials Chris Ferekides Fall 2014 Week 8.
One-dimensional modeling of TE devices using SPICE International Summerschool on Advanced Materials and Thermoelectricity 1 One-dimensional modeling of.
BASIC ELECTRONICS Module 1 Introduction to Semiconductors
Solution Processing of Bismuth Telluride and its Alloys for Improving Thermoelectric Properties Zhongfen Ding Department of Chemistry and Biochemistry.
Electronics 1 Lecture 3 Moving Charge Carriers
STEF-NANO-ACC Stimulating, Encouraging and Facilitating the Participation of ACC Nanotechnology and Nanoscience Research Organisations To FP6 Topic:
Introduction to Semiconductor Technology. Outline 3 Energy Bands and Charge Carriers in Semiconductors.
Lecture 1 OUTLINE Semiconductors, Junction, Diode characteristics, Bipolar Transistors: characteristics, small signal low frequency h-parameter model,
~ ~ Intro to Thermoelectrics ~ ~ Hot Cold Thermoelectric Effects S=Voltage response per  T [V/K] n Hot Cold V OC + p Seebeck Coeff, S Thermocouple.
Electron & Hole Statistics in Semiconductors A “Short Course”. BW, Ch
Conduction processes in semiconductors. Two form of charge carrier transport (1) Drift (due to E-field) (2) Diffusion (due to density gradient) for two.
3/23/2015PHY 752 Spring Lecture 231 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 23:  Transport phenomena and Fermi liquid.
DENSITY FUNCTIONAL THEORY From the theory to its practical applications. - Matthew Lane; Professor J. Staunton.
Semiconductor Conductivity Ch. 1, S It is well-known that in semiconductors, there are Two charge carriers! Electrons  e - & Holes  e + What is a hole?
Carrier generation and recombination A sudden increase in temperature increases the generation rate. An incident burst of photons increases the generation.
Direct energy conversion Professor Lev Bulat Department of Electrical and Electronic Engineering National Research University ITMO Laboratory on Direct.
Chapter 7 in the textbook Introduction and Survey Current density:
Obtaining the Bi 2 Te 3 thermoelectric thin films by using pulsed laser deposition Shupenev Alexander MT
PHYSICAL ELECTRONICS ECX 5239 PRESENTATION 01 PRESENTATION 01 Name : A.T.U.N Senevirathna. Reg, No : Center : Kandy.
Overview of Silicon Device Physics
Materials Research Centre Indian Institute of Science, Bangalore Abhishek K. Singh Indian Institute of Science, Bangalore High throughput computational.
學生: 蔡輔安 指導教授: 廖洺漢 台灣大學 機械系 2017/04/23
Shree Swami Atmanand Saraswati Institute of technology
Thermoelectric Modules (TEM)
Thermo-electric refrigeration.
Prospective Thermoelectric Tellurides
Semiconductors computers  air bags  Palm pilots  cell phones  pagers  DVD players  TV remotes  satellites  fiber networks  switches  photocells.
Lecture 2 OUTLINE Important quantities
Electrical Properties of Materials
ECEE 302: Electronic Devices
Read: Chapter 2 (Section 2.3)
Lesson 12 CONDUCTION HEAT TRANSFER
Volume 1, Issue 4, Pages (December 2017)
Al-based quasicrystal as a thermoelectric material
Thermal Sensors Q = mcT, where Q is the amount of heat in J, T is temperature in K, m is the mass in kg, c is the specific heat capacity in J/(Kg.K), and.
Volume 1, Issue 4, Pages (December 2017)
Thermoelectric & Thermionic conversions
Presentation transcript:

Computational Approaches Computational Approaches Theoretical Theoretical and and Computational Approaches Computational Approaches for Identifying and Optimizing Novel Thermoelectric Materials for Identifying and Optimizing Novel Thermoelectric Materials David J.Singh Theoretical and Computational Approaches for Identifying and Optimizing Novel Thermoelectric Materials David J.Singh 第一原理計算そしてバンド計算を元にした熱電についての Hiromi Okubo

Thermoelectric Effect The Seebeck effect The Peltier effect The Thomson effect Advantage Products Performance index Performance index ZT ZT Guideline of Design Guideline of Design CHEVREL PHASES Mo8Se6 Industrial material Bi2Te3/Sb2Te3 Future Future

Thermoelectric Effect In Thomas seebeck 1823 A temperature gradient A voltage drop Peltier effect Seebeck effect V V=S・ΔT ΠとSにはこのような関係があります Q=π・ I V T H T C Seebeck coefficient Peltier coefficient T H T C π= TS

Peltier device

Advantage Products Exhaust gas Heat generation from the engine Energy and environmental issues ・Generation by waste heat ・Cooling without Freon ・maintenance free ・longevity Products Mobile refrigerator in the car 熱電変換 固体の熱電気現象で熱と電気を相互変換 熱電素子 長寿命 メンテナンスフリー 直接変換 (老廃物なし) 廃熱による発電 フロンなしの冷却 エネルギー・環境問題 に資する Cooling machine of the CPU of the computer Thermoelectricity watch Exhaust gas Heat generation from the engine

ZT S σ Z =  Performance index 2 Electric conductivity Figure of Merit Electric conductivity Z = Seebeck coefficient  Thermal conductivity A.F.Ioffe, semiconductor Thermoelements and Thermoelectric cooling , Infosearch Ltd London(1957)

ZT σ S Z =  Performance index 2 Ohm's law Fourier's law Electric conductivity Z = Seebeck coefficient  Thermal conductivity A.F.Ioffe, semiconductor Thermoelements and Thermoelectric cooling , Infosearch Ltd London(1957)

ZT S σ Z =  Performance index 2 Electric conductivity Seebeck coefficient  Thermal conductivity A.F.Ioffe, semiconductor Thermoelements and Thermoelectric cooling , Infosearch Ltd London(1957)

Boltzmann equation + Band Theory Conductivity tensor

ZT σ S Z =  Performance index 2 Electric conductivity Figure of Merit Electric conductivity Z = Seebeck coefficient  Thermal conductivity A.F.Ioffe, semiconductor Thermoelements and Thermoelectric cooling , Infosearch Ltd London(1957)

σ σ Metals Z =  Insulators  semiconductor S S 2 σ  S Carrier concentration 2 σ S  Metals Z = low Seebeck coefficient large electronic contribution to the thermal conductivity Insulators large Seebeck coefficient small electronic contribution to the thermal conductivity Too few carriers semiconductor A carrier concentration of about 1019cm-3

G ε Large S  を最小にするには 元素固溶・重い元素・ラットリング 重要な点 格子の熱伝導率はが大きいとZT小さい 格子の熱伝導率の低い物質a low lattice thermal conductivity 単位格子内の原子数が多いものA large number of atoms in the unit cell    平均の原子量が大きいもの A large average atomic mass 一原子あたりの平均配位数が大きい結晶構造を有するものCrystal structures that result in a high average coordination number per atom かご状の構造を有し、内部に弱く結合した原子や分子が存在してガラガラのように鳴る構造を有すもの Cagelike structures in which a weakly bound atom or molecule in the cage “rattles” The ability of the lattice to conduct heat is only slightly affected by changes in the carrier concentration

Large S ε G  を最小にするには 元素固溶・重い元素・ラットリング 重要な点 格子の熱伝導率はが大きいとZT小さい 格子の熱伝導率の低い物質a low lattice thermal conductivity 単位格子内の原子数が多いものA large number of atoms in the unit cell    平均の原子量が大きいもの A large average atomic mass 一原子あたりの平均配位数が大きい結晶構造を有するものCrystal structures that result in a high average coordination number per atom かご状の構造を有し、内部に弱く結合した原子や分子が存在してガラガラのように鳴る構造を有すもの Cagelike structures in which a weakly bound atom or molecule in the cage “rattles” The ability of the lattice to conduct heat is only slightly affected by changes in the carrier concentration

Low dimension Large S Large S ε G  を最小にするには 元素固溶・重い元素・ラットリング 重要な点 格子の熱伝導率はが大きいとZT小さい 格子の熱伝導率の低い物質a low lattice thermal conductivity 単位格子内の原子数が多いものA large number of atoms in the unit cell    平均の原子量が大きいもの A large average atomic mass 一原子あたりの平均配位数が大きい結晶構造を有するものCrystal structures that result in a high average coordination number per atom かご状の構造を有し、内部に弱く結合した原子や分子が存在してガラガラのように鳴る構造を有すもの Cagelike structures in which a weakly bound atom or molecule in the cage “rattles” The ability of the lattice to conduct heat is only slightly affected by changes in the carrier concentration

Low  A large number of atoms in the unit cell A large average atomic mass Cagelike structures in which a weakly bound atom or molecule in the cage “rattles”  を最小にするには 元素固溶・重い元素・ラットリング 重要な点 格子の熱伝導率はが大きいとZT小さい 格子の熱伝導率の低い物質a low lattice thermal conductivity 単位格子内の原子数が多いものA large number of atoms in the unit cell    平均の原子量が大きいもの A large average atomic mass 一原子あたりの平均配位数が大きい結晶構造を有するものCrystal structures that result in a high average coordination number per atom かご状の構造を有し、内部に弱く結合した原子や分子が存在してガラガラのように鳴る構造を有すもの Cagelike structures in which a weakly bound atom or molecule in the cage “rattles” The ability of the lattice to conduct heat is only slightly affected by changes in the carrier concentration

Guideline of Design semiconductor Cagelike structures Low dimension σ 2 σ  S Carrier concentration semiconductor Between metal and insulator A carrier concentration of about 1019cm-3 Cagelike structures Low dimension Layered material A large atomic mass Low  Large S

Bi Te Sb Te / Industrial material ZT=1 ZT=1 Refrigerator ZT=3 4 2 3 / Sb Te 2 3 ZT=1 Carnot efficiency ZT=1 about 10% Refrigerator Carnot efficiency ZT=3 About 30% 4

ZT  Performance index ZT = f (βEg,B) B = N ・μ・ m ( ) * The degeneracy of the band extrema The carrier mobility The density of states band mass 状態密度 の有効質量 3 2  B = N ・μ・ m * ( ) γ ph G.D.MAHAN SOILD STATE PHYSICS,vol,51 P81

CHEVREL PHASES S Se Te Mo X Chalcogen Large voids in the crystal structure シェブレル Chalcogen S Se Te Mo X 6 8

CHEVREL PHASES Pb Mo X M Mo X Low  Metal Large voids in the crystal structure A large atomic mass Low  Pb Metal シェブレル Mo X M Mo X 6 8 6 8

CHEVREL PHASES Mo Se Mo - Se p d LAPW method (linearized augmented plane wave method) Mo Se d p - シェブレル Mo Se 8 6

CHEVREL PHASES LAPW method (linearized augmented plane wave method) degeneracy flat Mo Se 8 6 シェブレル

CHEVREL PHASES LAPW method (linearized augmented plane wave method) degeneracy flat Mo Se 8 6 Doping シェブレル N-type

CHEVREL PHASES LAPW method (linearized augmented plane wave method) degeneracy flat Mo Se 8 6 Doping シェブレル N-type

Future Future Layered material Low dimensional compound and Thermoelectric calculation and material Design A calculation of the figure of merit ZT based on Bloch- Boltzmann Formula used First-principles studies