Paul Geladi feb 06 Is Hyperspectral Imaging an Analytical Instrument?
Paul Geladi feb 06 Paul Geladi Head of Research NIRCE Chairperson NIR Nord Unit of Biomass Technology and Chemistry Swedish University of Agricultural Sciences Umeå Technobothnia Vasa btk.slu.se uwasa.fi
Paul Geladi feb 06
Content Short introduction of the topic Space imaging Instrumentation Examples, history and philososphical thoughts
Paul Geladi feb 06 Multivariate Image K << I ≈ J I J K I J K Hyperspectral Image K≈I≈J What is a hyperspectral image?
Paul Geladi feb MatrixNIR AVIRIS First defined in airborne imaging
Paul Geladi feb 06 Na Mg AlSi
Paul Geladi feb 06 CrFe Ni
Paul Geladi feb 06 Cu Zn Van Espen P., Janssens G., Vanhoolst W. & Geladi P., Imaging and image processing in analytical chemistry, Analusis, 20, 81-90, 1992.
Paul Geladi feb 06 Airborne hyperspectral imaging Randall Smith 2001
Paul Geladi feb 06
Some airborne systems SensorCountryNr bands Range m AVIRISUSA AISAFI CASICA DAISUSA HYMAPAU PROBE1USA
Paul Geladi feb 06 Orig Veg Water Soil
Paul Geladi feb 06 Conclusions Airborne Not too much chemometrics Calibration / standardization / correction problems Comparison of airborne / ground spectra
Paul Geladi feb 06 0 nm 3000 nm
Paul Geladi feb 06 Lab versus airplane We have our own “sun” It is controllable Only within limits Problems still exist How to quantify / correct problems?
Paul Geladi feb 06 Content Short introduction of the topic Space imaging Instrumentation Examples, history and philososphical thoughts
Paul Geladi feb 06 AVIRIS
Paul Geladi feb 06 Rotating filter wheel Alternative: illumination diode array
Paul Geladi feb 06 PbS camera Fiber ring Radiation source Interference filters
Paul Geladi feb nm 740 nm800 nm 840 nm 1010 nm1110 nm1200 nm Geladi P, Sethson B, Nyström J, Lillhonga T, Lestander T & Burger J, Chemometrics in spectroscopy: Part 2. Examples, Spectrochimica Acta Part B: Atomic Spectroscopy, 59, , 2004.
Paul Geladi feb 06 Prism-Grating -Prism Pushbroom
Paul Geladi feb 06 Interferometer Fixed mirror Moving mirror Semitransparent mirror (50%) Detector (interferogram) a b Sample (scan by moving) Radiation source
Paul Geladi feb 06 Most FT-IR FT-Raman
Paul Geladi feb 06 InGaAs array LCTF Objective Sample(s) Lamp(s) ≈5 cm To file 12 bit A/D convertor
Paul Geladi feb 06 InGaAs array LCTF Objective Sample(s) Lamp(s) ≈5 cm To file 12 bit A/D convertor 256x x0.2 mm 2 pixel max nm
Paul Geladi feb 06
Content Short introduction of the topic Examples, history and philososphical thoughts Standardization Calibration Sampling problems Comparison
Paul Geladi feb 06
Edmund catalog
Paul Geladi feb 06
wavelength nm A/D counts Specular reflection 99% 2% 75% 50% Raw A/D convertor data
Paul Geladi feb 06 wavelength nm Reflectance % NIST calibration Interpolation
Paul Geladi feb 06
2% 25% 50% 75% 99%
Paul Geladi feb 06
R= 1, 0.8, 0.6, 0.4 R= 0.2, 0.1, 0.05, 0
Paul Geladi feb 06 Content Short introduction of the topic Examples, history and philososphical thoughts Standardization Calibration Sampling problems Comparison
Paul Geladi feb 06 Metal frame 2% refl. 50% refl. 75% refl. 99% refl. Cheddar Blue Edam Emmenthal
Paul Geladi feb 06 Reference values (y) Pure standards Known mixtures Wet chemistry
Paul Geladi feb 06 Reference values Impossible to measure wet chemistry in every pixel All standards are heterogeneous at high magnification Not always possible with synthetic standards Geladi P., Burger J. & Lestander T., Hyperspectral imaging: calibration problems and solutions, Chemometrics and Intelligent Laboratory Systems, 72, , 2004.
Paul Geladi feb 06 Content Short introduction of the topic Space imaging Instrumentation Examples, history and philososphical thoughts Standardization Calibration Sampling problems Comparison
Paul Geladi feb 06 One pixel 50/50 mixture Sampling problem
Paul Geladi feb 06 One pixel 50/50 mixture
Paul Geladi feb 06
Content Short introduction of the topic Examples, history and philososphical thoughts Standardization Calibration Sampling problems Comparison Examples (removed, paper in review)
Paul Geladi feb 06 Comparison with a spectrometer Integration over a volume / area Only 1 detector High resolution 2 16 Wide range possible Lower noise Information in pixels / depth? Many detectors Low resolution 2 12 Limited range Noisier
Paul Geladi feb 06 Comparison Linearity better controlled No populations Quick Linear? Missing pixels Populations! Slow
Paul Geladi feb 06 Conclusions Airborne/space are ahead Many principles Instrument standardization needed No material is homogeneous at the nanolevel Camera ≠ spectrometer, but we get close
Paul Geladi feb 06 Acknowledgements Torbjörn Lestander, SLU, Umeå Jim Burger, SLU, Umeå EASIM European Association for Spectral Imaging started in Umeå 14 February 2006
Paul Geladi feb 06