Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Acid-Base Equilibria and Solubility Equilibria
Advertisements

Acid-Base Equilibria and Solubility Equilibria
AQUEOUS EQUILIBRIA AP Chapter 17.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Applications of Aqueous Equilibria
Acid-Base Equilibria and Solubility Equilibria Chapter
Copyright McGraw-Hill Chapter 17 Acid-Base Equilibria and Solubility Equilibria Insert picture from First page of chapter.
A CIDS AND B ASES II IB C HEMISTRY G R.12 Topic 18 1 Chem2_Dr. Dura.
CHM 112 Summer 2007 M. Prushan Acid-Base Equilibria and Solubility Equilibria Chapter 16.
Chapter 16: Applications of Aqueous Equilibria Renee Y. Becker Valencia Community College 1.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
Updates Assignment 06 is due Mon., March 12 (in class) Midterm 2 is Thurs., March 15 and will cover Chapters 16 & 17 –Huggins 10, 7-8pm –For conflicts:
Additional Aqueous Equilibria CHAPTER 16
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Updates Assignment 06 is due Mon., March 12 (in class) Midterm 2 is Thurs., March 15 and will cover Chapters 16 & 17 –Huggins 10, 7-8pm –For conflicts:
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Aqueous Equilibria Chapter 17 HW problems: 3, 5, 14, 15, 16, 23, 24, 27a, 28a, 31, 37, 43, 45, 51, 57.
Aqueous Equilibria. The __________________________ is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved.
Acid-Base and Solubility Equilibria Common-ion effect Buffer solutions Acid-base titration Solubility equilibria Complex ion formation Qualitative analysis.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Dr. Ali Bumajdad.
(equimolar amounts of acid and base have reacted)
Chapter 15 Applications of Aqueous Equilibria Addition of base: Normal human blood pH is 7.4 and has a narrow range of about +/- 0.2.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria (Buffers ) Green & Damji Chapter 8, Section 18.2 Chang Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required.
C h a p t e rC h a p t e r C h a p t e rC h a p t e r 16 Applications of Aqueous Equilibria Chemistry 4th Edition McMurry/Fay Chemistry 4th Edition McMurry/Fay.
Chapter 17 Additional Aspects of Aqueous Equilibria Subhash Goel South GA State College Douglas, GA © 2012 Pearson Education, Inc.
Chapter 17 Additional Aspects of Aqueous Equilibria
Aqueous Equilibria Chapter 17 Additional Aspects of Aqueous Equilibria You love Chemistry You might have doubts, but deep, deep, deep down you know there.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Strong base neutralizes weak acid Strong acid neutralizes weak base.
Acid-Base Equilibria Chapter 16. The __________________is the shift in equilibrium caused by the addition of a compound having an __________in common.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Solubility Equilibria 16.6 AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ]K sp is the solubility product constant MgF 2 (s) Mg 2+ (aq) + 2F - (aq)
CHAPTER 15 REACTIONS AND EQUILIBRIA INVOLVING ACIDS, BASES, AND SALTS.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 17 Additional Aspects of Aqueous Equilibria
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Semester 2/2014 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
Acid-Base Equilibria and Solubility Equilibria Chapter 16.
University Chemistry Chapter 12: Acid-Base Equilibria and Solubility Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Copyright © Cengage Learning. All rights reserved
Buffers Titrations and the Henderson Hasselbach Equation
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Solubility Equilibria
Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Aqueous Equilibria Chapter 17
Presentation transcript:

Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance. The presence of a common ion suppresses the ionization of a weak acid or a weak base. Consider mixture of CH 3 COONa (strong electrolyte) and CH 3 COOH (weak acid). CH 3 COONa (s) Na + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) H + (aq) + CH 3 COO - (aq) common ion

Consider mixture of salt NaA and weak acid HA. HA (aq) H + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) K a = [H + ][A - ] [HA] [H + ] = K a [HA] [A - ] -log [H + ] = -log K a - log [HA] [A - ] -log [H + ] = -log K a + log [A - ] [HA] pH = pK a + log [A - ] [HA] Also pK a = -log K a Henderson-Hasselbalch equation 16.2 pH = pK a + log [conjugate base] [acid]

What is the pH of a solution containing 0.30 M HCOOH (weak acid) and 0.52 M HCOOK? HCOOH (aq) H + (aq) + HCOO - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x x x Common ion effect 0.30 – x  x  0.52 pH = pK a + log [HCOO - ] [HCOOH] HCOOH pK a = 3.77 pH = log [0.52] [0.30] = Mixture of weak acid and conjugate base! HCOOH pK a = 3.77

A buffer solution is a solution of: 1.A weak acid or a weak base and 2.The salt of the weak acid or weak base Both must be present! mole of HCl is added to 1 L of pure water, the PH changes from its initial 7 to 2. (change of 5 PH units) mole of HCl is added to a solution containing both 0.1 M acetic acid (HC 2 H 3 O 2 ) and 0.1 M sodium acetate (NaC 2 H 3 O 2 ), the PH changes from initial value of 4.74 to (change of 0.08 PH units) Buffered solutions are important to living organisms whose cells can survive only in a very narrow PH range. Goldfish need buffering aqurium water at an appropriate PH. Human’s blood need to maintain the PH between 7.35 and 7.45.

A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base. Add strong acid H + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) Add strong base OH - (aq) + CH 3 COOH (aq) CH 3 COO - (aq) + H 2 O (l) Consider an equal molar mixture of CH 3 COOH and CH 3 COONa

Which of the following are buffer systems? (a) KF/HF (b) KBr/HBr, (c) Na 2 CO 3 /NaHCO 3 (a) HF is a weak acid and F - is its conjugate base buffer solution (b) HBr is a strong acid not a buffer solution (c) CO 3 2- is a weak base and HCO 3 - is its conjugate acid buffer solution 16.3

= 9.20 Calculate the pH of the 0.30 M NH 3 /0.36 M NH 4 Cl buffer system. What is the pH after the addition of 20.0 mL of M NaOH to 80.0 mL of the buffer solution? NH 4 + (aq) H + (aq) + NH 3 (aq) pH = pK a + log [NH 3 ] [NH 4 + ] pK a = 9.25 pH = log [0.30] [0.36] = 9.17 NH 4 + (aq) + OH - (aq) H 2 O (l) + NH 3 (aq) start (moles) pH = log [0.25] [0.28] [NH 4 + ] = final volume = 80.0 mL mL = 100 mL [NH 3 ] = pK a = 9.25 end (moles)

Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete. Equivalence point – the point at which the reaction is complete Indicator – substance that changes color at (or near) the equivalence point Slowly add base to unknown acid UNTIL The indicator changes color (pink) 4.7

Strong Acid-Strong Base Titrations NaOH (aq) + HCl (aq) H 2 O (l) + NaCl (aq) OH - (aq) + H + (aq) H 2 O (l) 16.4

Weak Acid-Strong Base Titrations CH 3 COOH (aq) + NaOH (aq) CH 3 COONa (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l) CH 3 COO - (aq) + H 2 O (l) OH - (aq) + CH 3 COOH (aq) At equivalence point (pH > 7): 16.4

Exactly 100 mL of 0.10 M HNO 2 are titrated with a 100 mL 0.10 M NaOH solution. What is the pH at the equivalence point ? HNO 2 (aq) + OH - (aq) NO 2 - (aq) + H 2 O (l) start (moles) end (moles) NO 2 - (aq) + H 2 O (l) OH - (aq) + HNO 2 (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx [NO 2 - ] = = 0.05 M Final volume = 200 mL K b = [OH - ][HNO 2 ] [NO 2 - ] = x2x x = 2.2 x – x  0.05x  1.05 x = [OH - ] pOH = 5.98 pH = 14 – pOH = 8.02

Strong Acid-Weak Base Titrations HCl (aq) + NH 3 (aq) NH 4 Cl (aq) NH 4 + (aq) + H 2 O (l) NH 3 (aq) + H + (aq) At equivalence point (pH < 7): 16.4 H + (aq) + NH 3 (aq) NH 4 + (aq)

Acid-Base Indicators HIn (aq) H + (aq) + In - (aq)  10 [HIn] [In - ] Color of acid (HIn) predominates  0.1 [HIn] [In - ] Color of conjugate base (In - ) predominates 16.5

pH 16.5

Which indicator(s) would you use for a titration of HNO 2 with KOH ? Weak acid titrated with strong base. At equivalence point, pH > 7 Use cresol red or phenolphthalein 16.5

Solubility Equilibria 16.6 AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ]K sp is the solubility product constant MgF 2 (s) Mg 2+ (aq) + 2F - (aq) K sp = [Mg 2+ ][F - ] 2 Ag 2 CO 3 (s) 2Ag + (aq) + CO (aq) K sp = [Ag + ] 2 [CO ] Ca 3 (PO 4 ) 2 (s) 3Ca 2+ (aq) + 2PO (aq) K sp = [Ca 2+ ] 3 [PO ] 2 Dissolution of an ionic solid in aqueous solution: Q = K sp Saturated solution Q < K sp Unsaturated solution No precipitate Q > K sp Supersaturated solution Precipitate will form Q = [Ag + ] 0 [Cl - ] 0

16.6

What is the solubility of silver chloride in g/L ? AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ] Initial (M) Change (M) Equilibrium (M) s+s +s+s ss K sp = s 2 s = K sp  s = 1.3 x [Ag + ] = 1.3 x M [Cl - ] = 1.3 x M Solubility of AgCl = 1.3 x mol AgCl 1 L soln g AgCl 1 mol AgCl x = 1.9 x g/L K sp = 1.6 x Molar solubility (mol/L) is the number of moles of solute dissolved in 1 L of a saturated solution. Solubility (g/L) is the number of grams of solute dissolved in 1 L of a saturated solution.

16.6

If 2.00 mL of M NaOH are added to 1.00 L of M CaCl 2, will a precipitate form? 16.6 The ions present in solution are Na +, OH -, Ca 2+, Cl -. Only possible precipitate is Ca(OH) 2 (solubility rules). Is Q > K sp for Ca(OH) 2 ? [Ca 2+ ] 0 = M [OH - ] 0 = 4.0 x M K sp = 8.0 x Q = [Ca 2+ ] 0 [OH - ] 0 2 = 0.10 x (4.0 x ) 2 = 1.6 x Q < K sp No precipitate will form Predicting precipitation reaction

The Common Ion Effect and Solubility The presence of a common ion decreases the solubility of the salt. What is the molar solubility of AgBr in (a) pure water and (b) M NaBr? AgBr (s) Ag + (aq) + Br - (aq) K sp = 7.7 x s 2 = K sp s = 8.8 x NaBr (s) Na + (aq) + Br - (aq) [Br - ] = M AgBr (s) Ag + (aq) + Br - (aq) [Ag + ] = s [Br - ] = s  K sp = x s s = 7.7 x

pH and Solubility The presence of a common ion decreases the solubility. Insoluble bases dissolve in acidic solutions Insoluble acids dissolve in basic solutions Mg(OH) 2 (s) Mg 2+ (aq) + 2OH - (aq) K sp = [Mg 2+ ][OH - ] 2 = 1.2 x K sp = (s)(2s) 2 = 4s 3 4s 3 = 1.2 x s = 1.4 x M [OH - ] = 2s = 2.8 x M pOH = 3.55 pH = At pH less than Lower [OH - ] OH - (aq) + H + (aq) H 2 O (l) Increase solubility of Mg(OH) 2 At pH greater than Raise [OH - ] Decrease solubility of Mg(OH)

Complex Ion Equilibria and Solubility A complex ion is an ion containing a central metal cation bonded to one or more molecules or ions. Co 2+ (aq) + 4Cl - (aq) CoCl 4 (aq) 2- K f = [CoCl 4 ] [Co 2+ ][Cl - ] 4 2- The formation constant or stability constant (K f ) is the equilibrium constant for the complex ion formation. Co(H 2 O) 6 2+ CoCl KfKf stability of complex

16.10