Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

Courant and all that Consistency, Convergence Stability Numerical Dispersion Computational grids and numerical anisotropy The goal of this lecture is to.
Technische Universität München Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD - Free Boundary Value Problems Tobias.
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Solving Equations = 4x – 5(6x – 10) -132 = 4x – 30x = -26x = -26x 7 = x.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 18.
09-1 Physics I Class 9 Conservation of Momentum in Two and Three Dimensions.
06-1 Physics I Class 06 Conservation of Momentum.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 27.
ES 202 Fluid and Thermal Systems Lecture 30: Lift and Drag Wrap-Up (2/20/2003)
Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Chapter 7 Linear Momentum. Chapter Momentum Linear Momentum- product of mass times velocity p=mvp=momentum units=kg.m/sec Restate Newton’s second.
Next Class Final Project and Presentation – Prepare and me the ppt files 5-7 slides Introduce your problem (1-2 slides) – Problem – Why CFD? Methods.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Mass Transfer Coefficient
Conservation of Momentum Chapter 6 section 2. Momentum is Conserved With in a closed system, momentum is conserved. With in a closed system, momentum.
The Generalized Interpolation Material Point Method.
Material Point Method Solution Procedure Wednesday, 10/9/2002 Map from particles to grid Interpolate from grid to particles Constitutive model Boundary.
Part 1 Chapter 1 Mathematical Modeling, Numerical Methods, and Problem Solving PowerPoints organized by Dr. Michael R. Gustafson II, Duke University and.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Ch 8 : Conservation of Linear Momentum 1.Linear momentum and conservation 2.Kinetic Energy 3.Collision 1 dim inelastic and elastic nut for 2 dim only inellastic.
Authored by : Dr. Harold Alden Williams Montgomery College at the Takoma Park/Silver Spring Campus, Planetarium Director and Physics and Geology Laboratory.
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Part 1 Chapter 1 Mathematical Modeling, Numerical Methods, and Problem Solving PowerPoints organized by Dr. Michael R. Gustafson II, Duke University and.
Example 1 Conservation of Momentum Quantitative Examples If the system includes both the man and the boy it is then an isolated, closed system and momentum.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Computer Animation Rick Parent Computer Animation Algorithms and Techniques Computational Fluid Dynamics.
Formula Momentum (p) = Mass x velocity Unit is kgm/s.
Instructor: Dr. Tatiana Erukhimova
Scientific Computing Lab
Scientific Computing Lab
REVISION MATERIAL FOR PHYSICAL SCIENCES DEFINITIONS: MOMENTUM
Pressure Poisson Equation
Integrated Science Glencoe Chapter 4
Scientific Computing Lab
Mathematical Modeling, Numerical Methods, and Problem Solving
Conservation of Momentum in Two and Three Dimensions
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Action and Reaction.
Multiple Stage Kinematics Problems
Instructor: Dr. Tatiana Erukhimova
Introduction to Scientific Computing II
Objective Numerical methods Finite volume.
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Section 2 Conservation of Momentum
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Introduction to Fluid Dynamics & Applications
Scientific Computing Lab
Instructor: Dr. Tatiana Erukhimova
EXERCISE SET 7 – Differential Equations
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Newton’s Third Law of Motion
Presentation transcript:

Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl

Time Discretisation Euler step for momentum equations pressure ensures mass conservation –poisson equation –correction of velocities

Time Step – Stability small reynolds number: dt < dx 2 high reynolds number: dt < dx

Algorithm (One Time Step) (1)compute time step dt (2)set boundary values (3)compute preliminary velocities (4)solve pressure equation (5)compute final velocities

Debugging simple setup: –one(!!!) time step –external forces zero test preliminary velocities at boundaries test residual of the pressure equation

Debugging enhanced setup: –initialize velocities constant but with nonzero boundary values test preliminary velocities