Light collection in “shashlik” calorimeters Mikhail Prokudin Ivan Korolko, ITEP.

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

ATLAS Tile Calorimeter Performance Henric Wilkens (CERN), on behalf of the ATLAS collaboration.
1 ALICE EMCal Electronics Outline: PHOS Electronics review Design Specifications –Why PHOS readout is suitable –Necessary differences from PHOS Shaping.
Quartz Plate Calorimeter Prototype Ugur Akgun The University of Iowa APS April 2006 Meeting Dallas, Texas.
2 Introduction   MiniCal test-beam studies started at the beginning of March (till March 6 we only had 17 APD’s, then 33 APD’s)   A few days were.
The performance of Strip-Fiber EM Calorimeter response uniformity, spatial resolution The 7th ACFA Workshop on Physics and Detector at Future Linear Collider.
W. Clarida, HCAL Meeting, Fermilab Oct. 06 Quartz Plate Calorimeter Prototype Geant4 Simulation Progress W. Clarida The University of Iowa.
Cosmic Ray Test Stand with Scintillating Cells for Digital Hadron Calorimeter As of 9am 05/28/2003.
Status of calorimeter simulations Mikhail Prokudin, ITEP.
FMS review, Sep FPD/FMS: calibrations and offline reconstruction Measurements of inclusive  0 production Reconstruction algorithm - clustering.
Photon reconstruction and calorimeter software Mikhail Prokudin.
Proposal for IHEP participation in CBM ECAL
N. Anfimov (JINR) on behalf of the ECAL0 team.  Introduction  Installation and commissioning  Calibration  Data taking  Preliminary result  Plans.
Leroy Nicolas, HESS Calibration results, 28 th ICRC Tsukuba Japan, August Calibration results of the first two H·E·S·S· telescopes Nicolas Leroy.
The Design of Barrel Electromagnetic Calorimeter (BEMC) October Lu Jun-guang.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
Study of response uniformity of LHCb ECAL Mikhail Prokudin, ITEP.
LCG Meeting, May 14th 2003 V. Daniel Elvira1 G4 (OSCAR_1_4_0) Validation of CMS HCal V. Daniel Elvira Fermilab.
Status of Atlas Tile Calorimeter and Study of Muon Interactions L. Price for TileCal community Short Overview of the TileCal Project mechanics instrumentation.
Shashlik type calorimeter for SHIP experiment
Photo-detector and scintillator studies at ITEP Outline 1. Check of casting form 2. Study of MRS APD’s from CPTA 3. MC simulation of light collection in.
PANDA electromagnetic calorimeters Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group INSTR08 28 Feb - 05 Mar 2008.
Status of Projectile Spectator Detector A.Kurepin (Institute for Nuclear Research, Moscow) I. Introduction to PSD. II. Conception and design. III. Development.
Beam test results of Tile/fiber EM calorimeter and Simulator construction status 2005/03/05 Detector Niigata University ONO Hiroaki contents.
Feb 10, 2005 S. Kahn -- Pid Detectors in G4MicePage 1 Pid Detector Implementation in G4Mice Steve Kahn Brookhaven National Lab 10 Feb 2005.
Calibration of the ZEUS calorimeter for electrons Alex Tapper Imperial College, London for the ZEUS Collaboration Workshop on Energy Calibration of the.
Thomas Jefferson National Accelerator Facility Page 1 EC / PCAL ENERGY CALIBRATION Cole Smith UVA PCAL EC Outline Why 2 calorimeters? Requirements Using.
CALORIMETER system for the CBM detector Ivan Korolko (ITEP Moscow) CBM Collaboration meeting, October 2004.
Exclusive π 0 electroproduction in the resonance region. Nikolay Markov, Maurizio Ungaro, Kyungseon Joo University of Connecticut Hadron spectroscopy meeting.
Water Tank as the Outer Muon Veto Mingjun Chen
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
1 Lead glass simulations Eliane Epple, TU Munich Kirill Lapidus, INR Moscow Collaboration Meeting XXI March 2010 GSI.
28 June 2010 LHCb week St Petersburg M.N Minard 1 Calorimeter status Hardware status Controls & monitoring Timing alignment Calorimeters calibration Pending.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
G4 Validation meeting (5/11/2003) S.VIRET LPSC Grenoble Photon testbeam Data/G4 comparison  Motivation  Testbeam setup & simulation  Analysis & results.
CBM ECAL simulation status Prokudin Mikhail ITEP.
Calorimeter in front of MUCh Mikhail Prokudin. Overview ► Geometry and acceptance ► Reconstruction procedure  Cluster finder algorithms  Preliminary.
O. Atramentov, American Linear Collider Workshop, Cornell U July 2003 Fast gas Cherenkov Luminosity Monitor Progress Update O. Atramentov, J.Hauptman.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
1 P.Rebecchi (CERN) “Monitoring of radiation damage of PbWO 4 crystals under strong Cs 137  irradiation in GIF-ECAL” “Advanced Technology and Particle.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
CALICE Tungsten HCAL Prototype status Erika Garutti Wolfgang Klempt Erik van der Kraaij CERN LCD International Workshop on Linear Colliders 2010, October.
The LHCb Electromagnetic Calorimeter Ivan Belyaev, ITEP/Moscow.
PMT measurements in Antares Oleg Kalekin on behalf of Antares collaboration VLVnT 2011 Erlangen
Geant4 Tutorial, Oct28 th 2003V. Daniel Elvira Geant4 Simulation of the CMS 2002 Hcal Test Beam V. Daniel Elvira Geant4 Tutorial.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
PROPOSAL FOR A MUON VETO SYSTEM BEHIND THE HADRONIC CALORIMETER (MUV-3) Problems and requirements:  Expected total rate for 9.25 < R < 120 cm: 12.1 MHz:
Testbeam analysis Lesya Shchutska. 2 beam telescope ECAL trigger  Prototype: short bars (3×7.35×114 mm 3 ), W absorber, 21 layer, 18 X 0  Readout: Signal.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Photon Transport Monte Carlo September 27, 2004 Matthew Jones/Riei IshizikiPurdue University Overview Physical processes PMT and electronics response Some.
Energy Reconstruction in the CALICE Fe-AHCal in Analog and Digital Mode Fe-AHCal testbeam CERN 2007 Coralie Neubüser CALICE Collaboration meeting Argonne,
Sergey BarsukElectromagnetic Calorimeter for 1 Electromagnetic Calorimeter for the LHCb experiment Perugia, Italy March 29 – April 2, 2004 ECAL CALO Sergey.
SHIP calorimeters at test beam I. KorolkoFebruary 2016.
FSC status and plans Pavel Semenov IHEP, Protvino
NRC Kurchatov Institute, ITEP I. Korolko, M.Prokudin, Yu.Zaitsev
Calorimeters at CBM A. Ivashkin INR, Moscow.
CALICE scintillator HCAL
IHEP group Shashlyk activity towards TDR
Panagiotis Kokkas Univ. of Ioannina
Detection of muons at 150 GeV/c with a CMS Preshower Prototype
KM2A Electron Detector Optimization
CMS ECAL Calibration and Test Beam Results
Detector Configuration for Simulation (i)
Testbeam analysis on module #1
LC Calorimeter Testbeam Requirements
Presentation transcript:

Light collection in “shashlik” calorimeters Mikhail Prokudin Ivan Korolko, ITEP

Outline ► Motivation ► Experimental measurements  Experimental setup  Coordinate determination  Results for LHCb and preCBM prototype modules ► muons and electrons  Light yield ► MC modeling  Thickness variation  Ray tracer  GEANT simulation ► Comparison with data ► Simple predictions for current CBM calorimeter

“Shashlik” technology ► Fast  25-30ns trigger signal  TOF measurements ► 120 ps e/ γ ► 300 ps hadrons ► Radiation hardness  2MRad leads to 1.5% constant term increase ► Easy segmentation  longitudinal  transverse ► Cheap 7% RD36 data ► Energy resolution  typical ~8%/sqrt(E)  constant term!

Methods to improve ► Sampling term  decrease thickness of absorber ► increase scintillator mass ration  increase Moliere radius ► more shower overlaps ► decrease scintillator tiles thickness  photostatistics ► Constant term  increase thickness of scintillator tiles  technology ► die mold price ~7k $ ► model of light collection in calorimeter ► CBM case  Large background  Minimize Moliere radius ► less overlapping showers  Keep resolution as good as possible ► better S/B Studies supported by INTAS INTAS INTAS RosAtom

Experimental setup Beam e, μ Beam plug Calorimeter m10.97m2.935 new chamber old chambers Calorimeter assembly 8 modules (12x12cm 2 x1) for leakage control testing module LED1 LED2 PIN LED monitoring system scheme

Coordinate determination ► Standard calibration procedure  Charge injection in certain points of the chamber ► Delay wire chambers. A users guide. J.Spanggaard.  Shifts and scales can be corrected  Quality ► 3-rd chamber  track fitting ► bad track rejecting

Coordinate determination ► Modify coefficients  residuals ► keep 0 average ► narrow ► Cut χ 2 <4  denominator from “Delay wire chambers...” by J.Spanggaard.

Coordinate determination

Muons. Procedure ► energy only in central cell ► 1x1 mm 2 regions ► fit with Landau distribution  first fit to estimate ranges  second fit with ► f(x start )=0.4*Max ► f(x end )=0.05*Max  no Landau Gauss convolution ► much more statistics

Results. Mouns. LHCb ► Geometry:  40x40mm cells  16 fibers  67x4mm scintillator layers  66x2mm lead layers ► Light mixer!

Results. Muons. preCBM ► Geometry:  40x40 mm cells  16 fibers  280x0.5 mm lead layers  280x0.5 mm scintillator layers ► extreme ► for MC tuning

Electrons. procedure ► Collect energy in 3x3+4 cells  wide signals with if other 4 cells included ► 1x1 mm2 regions ► Iterative fit procedure  [-1.2 δ, +2 δ ] region

50 GeV electrons. LHCb. Results No electrons measurements for the preCBM prototype! 7% RD36 ► Geometry:  67x4mm scintillator layers  66x2mm lead layers ► Different module!

Light yield measurements ► Procedure  measure LED signal amplitude and width by PMT ► monitoring system!  Number of photoelectrons=Amplitude LED /(Width LED ) 2 ► Poisson statistics ► Other factors -> wider signal  underestimated number of photoelectons  width of pedestals subtracted  different LED amplitudes  Calibration ► ADC count -> GeV LED1 LED2 LED monitoring system scheme PIN

Light yield measurements Geometry Scintillator/Lead volume ratio Testbeam Cosmic setup Small 40x40x4mm 3 fiber per 1x1cm 2 2: Middle 60x60x4mm 3 fiber per 1x1cm 2 fiber per 1x1cm 22: Large 120x120x4mm 3 fiber per 1.5x1.5cm 2 fiber per 1.5x1.5cm 22: preCBM 40x40x0.5mm 3 fiber per 1x1cm 2 fiber per 1x1cm 21:1700-

MC modeling ► Signal nonuniformity  Scintillator tile thickness variations ► Measured directly  Light collection nonuniformity ► Special ray tracer program  Convolution with particle energy deposition  “natural” smearing  energy deposition nonuniformity ► GEANT

Thickness variations ► Direct measurements with micrometer ► ~250 measured points per tile ► Spline extrapolation

Thickness measurements “Bad” tiles “Good” tiles

Thickness measurements “Bad” tileExample of “good” tile Traces on the surface are different for “good” and “bad” tiles!

Thickness measurements. Results Scale!

Ray tracer program. Requirements ► Quite complex geometry  Boolean shapes ► Large statistics  10 7 photons per measurement ► 1% precision ► ~3% light collection and transport efficiency  200eV for scintillator photon  10% of energy deposition visible  20% photon to electron conversion probability in PMT ► 10 5 photons per GeV without light transport and collection  ~3000/GeV photoelectrons in PMT CPU: ITEP batch farm ITEP batch farm GSI batch farm GSI batch farm GRID GRID 5x10 4 hx2.4 GHz spent 5x10 4 hx2.4 GHz spent 1x10 4 jobs 1x10 4 jobs

Ray tracer program ► Optics  refraction ► Fresnel formulas  reflection ► mirror ► diffuse  attenuation ► in medium ► on surface  all processes could depend on wavelength ► Geometry  Geometrical primitives ► cylinder ► box  Boolean operations  Voxelizaliton ► for speedup

Voxelization. Surface quality ► Idea: small regions (0.5x0.5mm 2 )  list of excluded objects  sorted by distance list of objects ► remove objects with distance larger then found  classical trade CPU/memory ► 2 materials  plastic ► fully transparent  tyvek ► 40% diffuse reflection ► 60% black  tyvek(surface quality)+plastic(1-surface quality)

White paint ► Edges and edging  edging width require fine tuning  no mirror reflection or transparency  scaling coefficient introduced ► one of the main parameters

Procedure ► 0.5x0.5mm 2 regions ► Photons generated uniformly  also on Z axis  isotropic ► Transported till photon absorption ► Reemission in fiber  isotropic  check angles (transport to PMT)

Example of ray tracer test ► Edge effect in light collection  dead material between tiles  not trivial  LHCb technology

Ray tracing. Results Whiteness 1.02Whiteness 1.08 preCBM prototype: 0.5mm thickness, no edging, surface quality 0.06

Ray tracing. Comparison with light yield ► Generate photons uniformly inside tile volume ► Take small LHCb tiles for normalization Testbeam Cosmic setup MC Small Middle Large preCBM Excellent middle module at testbeam?

GEANT model Module example ► Tile model with holes and fibers  same as for ray-tracing ► Assemble the module  steel tapes ► Assemble the calorimeter wall ► Gorynych framework  for FLINT experiment  similar to FAIRROOT ► code can easily used for modeling CBM calorimeter

Comparison with data ► Light collection efficiencies maps  0.5x0.5mm 2 segmentation ► Calorimeter response with GEANT  30KeV Geant3 cuts  1.0x1.0mm 2 segmentation  converge with ► light collection maps ► thickness maps ► Free parameters  fraction of “bad” tiles in calorimeter  light collection  for LHCb ► whiteness of edges and edging ► size of edging  for preCBM prototype ► surface quality of the tile

Muons. Fitting ► Fit with Landau distribution  first fit to estimate ranges  second fit with ► f(x start )=0.4*Max ► f(x end )=0.05*Max ► 1x1mm 2 regions

LHCb inner module No light mixer in MC because of no Cherenkov light treating.

LHCb inner module ► Idea:  exclude central region ► no light mixer  fit experiment with MC ► normalization is only parameter ► errors taken from fits ► Extracted parameters  Fraction of bad tiles 0.3  Whiteness of edge 1.13  Edging size 1.0mm  Surface quality n/r Gray – MC, Black – data

LHCb outer module ► No thickness map  generated to be “alike” inner module ► Available experimental data scaled on one axis ► 1x2mm 2 regions ► Extracted parameters  Fraction of “bad” tiles 0.2  Whiteness of the edge 1.11  Thickness on edging 1.0mm  Surface quality n/r Gray – MC, Black – data

preCBM prototype ► Extracted parameters  Fraction of bad tiles 0.2  Edge whiteness n/r  Size of edging 0.0mm  Surface quality 0.06 Gray – MC, Black – data

Electrons. LHCb inner module Iterative fit with Gaussian in [-1.2 δ,+2 δ ] for signals

Electrons. LHCb inner module ► Extracted parameters  Fraction of “bad” tiles 0.3  Edge whiteness 1.13  Size of edging 2.0mm  Surface quality n/r Gray – MC, Black – data

Summary LHCb muons LHCb electrons preCBM LHCb large Fraction of “bad” tiles Edge whiteness n/r1.11 Size of edging 1.0mm2.0mm0.0mm1.0mm Surface quality n/rn/r0.06n/r n/r means not relevant

CBM module (simple prediction) ► Geometry  4x4cm 2 cells ► all information available  140 layers ► 1mm scintillator ► 1mm lead ► Take parameters from LHCb and preCBM modules ► current technology  fraction of “bad” tiles 0.7  edge whiteness 1.12  size of edging 1.0mm  surface quality 0.06 ► Thickness measurements from LHCb tiles ► Procedure described above

CBM module (simple prediction) Muons50 GeV electrons

Nonuniformities ► Measured  LHCb ► different geometry ► different probes  preCBM prototype ► Modeled  light collection ► ray-tracer code  GEANT ► Model crosschecked  same parameters  different geometries  different probes ► Results are consistent ► Non uniformities prediction  current technology  15% nonuniformity with muons  2% with 50GeV electrons ► Technology upgrade  surface quality  remove “bad” tiles ► technology of tiles manufacturing!  adjust edge whiteness ► can be controlled during production stage  light masking, die mold shape …

Light yield measurements ► Idea: Relative width of LED signal in PMT only number of photoelectrons  Poisson statistics  Calibration for ADC counts -> GeV  Other factors: wide signal -> less photoelectrons ► subtract width of pedestals ► Results  small (40x40mm 2 fiber per 1x1cm 2 ) cells ► 3000 (3100)  middle (60x60mm 2, fiber per 1x1cm 2 ) cells ► 4200 (3500)  outer (120x120mm 2, fiber per 1.5x1.5cm 2 ) cells ► 2500 (2600)  preCBM (40x40mm 2, fiber per 1x1 cm 2 ) ► 700